Optimal. Leaf size=27 \[ -x+\left (e^2-\frac {e^4}{\log ^2\left (-\frac {1}{e^4}+e^x\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.67, antiderivative size = 37, normalized size of antiderivative = 1.37, number of steps used = 11, number of rules used = 6, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {2282, 6742, 2390, 12, 2302, 30} \begin {gather*} -x+\frac {e^8}{\log ^4\left (e^x-\frac {1}{e^4}\right )}-\frac {2 e^6}{\log ^2\left (e^x-\frac {1}{e^4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2282
Rule 2302
Rule 2390
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {4 e^{12} x-4 e^{10} x \log ^2\left (-\frac {1}{e^4}+x\right )-\left (1-e^4 x\right ) \log ^5\left (-\frac {1}{e^4}+x\right )}{x \left (1-e^4 x\right ) \log ^5\left (-\frac {1}{e^4}+x\right )} \, dx,x,e^x\right )\\ &=\operatorname {Subst}\left (\int \left (-\frac {1}{x}-\frac {4 e^{12}}{\left (-1+e^4 x\right ) \log ^5\left (-\frac {1}{e^4}+x\right )}+\frac {4 e^{10}}{\left (-1+e^4 x\right ) \log ^3\left (-\frac {1}{e^4}+x\right )}\right ) \, dx,x,e^x\right )\\ &=-x+\left (4 e^{10}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-1+e^4 x\right ) \log ^3\left (-\frac {1}{e^4}+x\right )} \, dx,x,e^x\right )-\left (4 e^{12}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-1+e^4 x\right ) \log ^5\left (-\frac {1}{e^4}+x\right )} \, dx,x,e^x\right )\\ &=-x+\left (4 e^{10}\right ) \operatorname {Subst}\left (\int \frac {1}{e^4 x \log ^3(x)} \, dx,x,-\frac {1}{e^4}+e^x\right )-\left (4 e^{12}\right ) \operatorname {Subst}\left (\int \frac {1}{e^4 x \log ^5(x)} \, dx,x,-\frac {1}{e^4}+e^x\right )\\ &=-x+\left (4 e^6\right ) \operatorname {Subst}\left (\int \frac {1}{x \log ^3(x)} \, dx,x,-\frac {1}{e^4}+e^x\right )-\left (4 e^8\right ) \operatorname {Subst}\left (\int \frac {1}{x \log ^5(x)} \, dx,x,-\frac {1}{e^4}+e^x\right )\\ &=-x+\left (4 e^6\right ) \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log \left (-\frac {1}{e^4}+e^x\right )\right )-\left (4 e^8\right ) \operatorname {Subst}\left (\int \frac {1}{x^5} \, dx,x,\log \left (-\frac {1}{e^4}+e^x\right )\right )\\ &=-x+\frac {e^8}{\log ^4\left (-\frac {1}{e^4}+e^x\right )}-\frac {2 e^6}{\log ^2\left (-\frac {1}{e^4}+e^x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 37, normalized size = 1.37 \begin {gather*} -x+\frac {e^8}{\left (-4+\log \left (-1+e^{4+x}\right )\right )^4}-\frac {2 e^6}{\left (-4+\log \left (-1+e^{4+x}\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.79, size = 61, normalized size = 2.26 \begin {gather*} -\frac {x \log \left (-{\left (e^{8} - e^{\left (x + 12\right )}\right )} e^{\left (-12\right )}\right )^{4} + 2 \, e^{6} \log \left (-{\left (e^{8} - e^{\left (x + 12\right )}\right )} e^{\left (-12\right )}\right )^{2} - e^{8}}{\log \left (-{\left (e^{8} - e^{\left (x + 12\right )}\right )} e^{\left (-12\right )}\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 147, normalized size = 5.44 \begin {gather*} -\frac {\log \left (e^{\left (x + 4\right )} - 1\right )^{4} \log \left (e^{\left (x + 4\right )}\right ) - 16 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{3} \log \left (e^{\left (x + 4\right )}\right ) + 2 \, e^{6} \log \left (e^{\left (x + 4\right )} - 1\right )^{2} + 96 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{2} \log \left (e^{\left (x + 4\right )}\right ) - 16 \, e^{6} \log \left (e^{\left (x + 4\right )} - 1\right ) - 256 \, \log \left (e^{\left (x + 4\right )} - 1\right ) \log \left (e^{\left (x + 4\right )}\right ) - e^{8} + 32 \, e^{6} + 256 \, \log \left (e^{\left (x + 4\right )}\right )}{\log \left (e^{\left (x + 4\right )} - 1\right )^{4} - 16 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{3} + 96 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{2} - 256 \, \log \left (e^{\left (x + 4\right )} - 1\right ) + 256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 37, normalized size = 1.37
method | result | size |
risch | \(-x +\frac {{\mathrm e}^{6} \left (-2 \ln \left (\left ({\mathrm e}^{4+x}-1\right ) {\mathrm e}^{-4}\right )^{2}+{\mathrm e}^{2}\right )}{\ln \left (\left ({\mathrm e}^{4+x}-1\right ) {\mathrm e}^{-4}\right )^{4}}\) | \(37\) |
derivativedivides | \(-\ln \left (\left ({\mathrm e}^{x}-{\mathrm e}^{-4}\right ) {\mathrm e}^{4}+1\right )-\frac {2 \,{\mathrm e}^{6}}{\ln \left ({\mathrm e}^{x}-{\mathrm e}^{-4}\right )^{2}}+\frac {{\mathrm e}^{8}}{\ln \left ({\mathrm e}^{x}-{\mathrm e}^{-4}\right )^{4}}\) | \(54\) |
default | \(-\ln \left (\left ({\mathrm e}^{x}-{\mathrm e}^{-4}\right ) {\mathrm e}^{4}+1\right )-\frac {2 \,{\mathrm e}^{6}}{\ln \left ({\mathrm e}^{x}-{\mathrm e}^{-4}\right )^{2}}+\frac {{\mathrm e}^{8}}{\ln \left ({\mathrm e}^{x}-{\mathrm e}^{-4}\right )^{4}}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 408, normalized size = 15.11 \begin {gather*} \frac {\log \left (-e^{\left (-4\right )} + e^{x}\right )^{5}}{4 \, {\left (\log \left (e^{\left (x + 4\right )} - 1\right )^{4} - 16 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{3} + 96 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{2} - 256 \, \log \left (e^{\left (x + 4\right )} - 1\right ) + 256\right )}} + \frac {5 \, \log \left (-e^{\left (-4\right )} + e^{x}\right )^{4}}{12 \, {\left (\log \left (e^{\left (x + 4\right )} - 1\right )^{3} - 12 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{2} + 48 \, \log \left (e^{\left (x + 4\right )} - 1\right ) - 64\right )}} - \frac {1}{3} \, {\left (\frac {2 \, \log \left (-e^{\left (-4\right )} + e^{x}\right )}{\log \left (e^{\left (x + 4\right )} - 1\right )^{3} - 12 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{2} + 48 \, \log \left (e^{\left (x + 4\right )} - 1\right ) - 64} + \frac {1}{\log \left (e^{\left (x + 4\right )} - 1\right )^{2} - 8 \, \log \left (e^{\left (x + 4\right )} - 1\right ) + 16}\right )} e^{6} + \frac {5}{6} \, {\left (\frac {e^{4} \log \left (-e^{\left (-4\right )} + e^{x}\right )^{3}}{\log \left (e^{\left (x + 4\right )} - 1\right )^{2} - 8 \, \log \left (e^{\left (x + 4\right )} - 1\right ) + 16} - 6 \, e^{4} \log \left (-e^{\left (-4\right )} + e^{x}\right ) \log \left (\log \left (e^{\left (x + 4\right )} - 1\right ) - 4\right ) + 6 \, {\left (\log \left (-e^{\left (-4\right )} + e^{x}\right ) \log \left (\log \left (e^{\left (x + 4\right )} - 1\right ) - 4\right ) - \log \left (e^{\left (x + 4\right )} - 1\right )\right )} e^{4} + \frac {3 \, e^{4} \log \left (-e^{\left (-4\right )} + e^{x}\right )^{2}}{\log \left (e^{\left (x + 4\right )} - 1\right ) - 4}\right )} e^{\left (-4\right )} - \frac {e^{6} \log \left (-e^{\left (-4\right )} + e^{x}\right )^{2}}{\log \left (e^{\left (x + 4\right )} - 1\right )^{4} - 16 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{3} + 96 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{2} - 256 \, \log \left (e^{\left (x + 4\right )} - 1\right ) + 256} - x + \frac {e^{8}}{\log \left (e^{\left (x + 4\right )} - 1\right )^{4} - 16 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{3} + 96 \, \log \left (e^{\left (x + 4\right )} - 1\right )^{2} - 256 \, \log \left (e^{\left (x + 4\right )} - 1\right ) + 256} + \log \left (e^{\left (x + 4\right )} - 1\right ) - 4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 43, normalized size = 1.59 \begin {gather*} -\frac {x\,{\ln \left ({\mathrm {e}}^x-{\mathrm {e}}^{-4}\right )}^4+2\,{\mathrm {e}}^6\,{\ln \left ({\mathrm {e}}^x-{\mathrm {e}}^{-4}\right )}^2-{\mathrm {e}}^8}{{\ln \left ({\mathrm {e}}^x-{\mathrm {e}}^{-4}\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 39, normalized size = 1.44 \begin {gather*} - x + \frac {- 2 e^{6} \log {\left (\frac {e^{4} e^{x} - 1}{e^{4}} \right )}^{2} + e^{8}}{\log {\left (\frac {e^{4} e^{x} - 1}{e^{4}} \right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________