Optimal. Leaf size=22 \[ 16 \left (x+\frac {1}{\left (25+\frac {e^{4 x^2}}{3}+x^2\right )^4}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {37968750000+16 e^{20 x^2}-31104 x+7593750000 x^2+607500000 x^4+24300000 x^6+486000 x^8+3888 x^{10}+e^{16 x^2} \left (6000+240 x^2\right )+e^{12 x^2} \left (900000+72000 x^2+1440 x^4\right )+e^{8 x^2} \left (67500000+8100000 x^2+324000 x^4+4320 x^6\right )+e^{4 x^2} \left (2531250000-41472 x+405000000 x^2+24300000 x^4+648000 x^6+6480 x^8\right )}{2373046875+e^{20 x^2}+474609375 x^2+37968750 x^4+1518750 x^6+30375 x^8+243 x^{10}+e^{16 x^2} \left (375+15 x^2\right )+e^{12 x^2} \left (56250+4500 x^2+90 x^4\right )+e^{8 x^2} \left (4218750+506250 x^2+20250 x^4+270 x^6\right )+e^{4 x^2} \left (158203125+25312500 x^2+1518750 x^4+40500 x^6+405 x^8\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 \left (e^{20 x^2}+15 e^{16 x^2} \left (25+x^2\right )+90 e^{12 x^2} \left (25+x^2\right )^2+270 e^{8 x^2} \left (25+x^2\right )^3+81 e^{4 x^2} \left (1953125-32 x+312500 x^2+18750 x^4+500 x^6+5 x^8\right )+243 \left (9765625-8 x+1953125 x^2+156250 x^4+6250 x^6+125 x^8+x^{10}\right )\right )}{\left (75+e^{4 x^2}+3 x^2\right )^5} \, dx\\ &=16 \int \frac {e^{20 x^2}+15 e^{16 x^2} \left (25+x^2\right )+90 e^{12 x^2} \left (25+x^2\right )^2+270 e^{8 x^2} \left (25+x^2\right )^3+81 e^{4 x^2} \left (1953125-32 x+312500 x^2+18750 x^4+500 x^6+5 x^8\right )+243 \left (9765625-8 x+1953125 x^2+156250 x^4+6250 x^6+125 x^8+x^{10}\right )}{\left (75+e^{4 x^2}+3 x^2\right )^5} \, dx\\ &=16 \int \left (1-\frac {2592 x}{\left (75+e^{4 x^2}+3 x^2\right )^4}+\frac {1944 x \left (99+4 x^2\right )}{\left (75+e^{4 x^2}+3 x^2\right )^5}\right ) \, dx\\ &=16 x+31104 \int \frac {x \left (99+4 x^2\right )}{\left (75+e^{4 x^2}+3 x^2\right )^5} \, dx-41472 \int \frac {x}{\left (75+e^{4 x^2}+3 x^2\right )^4} \, dx\\ &=16 x+15552 \operatorname {Subst}\left (\int \frac {99+4 x}{\left (75+e^{4 x}+3 x\right )^5} \, dx,x,x^2\right )-20736 \operatorname {Subst}\left (\int \frac {1}{\left (75+e^{4 x}+3 x\right )^4} \, dx,x,x^2\right )\\ &=16 x+15552 \operatorname {Subst}\left (\int \left (\frac {99}{\left (75+e^{4 x}+3 x\right )^5}+\frac {4 x}{\left (75+e^{4 x}+3 x\right )^5}\right ) \, dx,x,x^2\right )-20736 \operatorname {Subst}\left (\int \frac {1}{\left (75+e^{4 x}+3 x\right )^4} \, dx,x,x^2\right )\\ &=16 x-20736 \operatorname {Subst}\left (\int \frac {1}{\left (75+e^{4 x}+3 x\right )^4} \, dx,x,x^2\right )+62208 \operatorname {Subst}\left (\int \frac {x}{\left (75+e^{4 x}+3 x\right )^5} \, dx,x,x^2\right )+1539648 \operatorname {Subst}\left (\int \frac {1}{\left (75+e^{4 x}+3 x\right )^5} \, dx,x,x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 1.00 \begin {gather*} 16 \left (x+\frac {81}{\left (75+e^{4 x^2}+3 x^2\right )^4}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 179, normalized size = 8.14 \begin {gather*} \frac {16 \, {\left (81 \, x^{9} + 8100 \, x^{7} + 303750 \, x^{5} + 5062500 \, x^{3} + x e^{\left (16 \, x^{2}\right )} + 12 \, {\left (x^{3} + 25 \, x\right )} e^{\left (12 \, x^{2}\right )} + 54 \, {\left (x^{5} + 50 \, x^{3} + 625 \, x\right )} e^{\left (8 \, x^{2}\right )} + 108 \, {\left (x^{7} + 75 \, x^{5} + 1875 \, x^{3} + 15625 \, x\right )} e^{\left (4 \, x^{2}\right )} + 31640625 \, x + 81\right )}}{81 \, x^{8} + 8100 \, x^{6} + 303750 \, x^{4} + 5062500 \, x^{2} + 12 \, {\left (x^{2} + 25\right )} e^{\left (12 \, x^{2}\right )} + 54 \, {\left (x^{4} + 50 \, x^{2} + 625\right )} e^{\left (8 \, x^{2}\right )} + 108 \, {\left (x^{6} + 75 \, x^{4} + 1875 \, x^{2} + 15625\right )} e^{\left (4 \, x^{2}\right )} + e^{\left (16 \, x^{2}\right )} + 31640625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 248, normalized size = 11.27 \begin {gather*} \frac {16 \, {\left (81 \, x^{9} + 108 \, x^{7} e^{\left (4 \, x^{2}\right )} + 8100 \, x^{7} + 54 \, x^{5} e^{\left (8 \, x^{2}\right )} + 8100 \, x^{5} e^{\left (4 \, x^{2}\right )} + 303750 \, x^{5} + 12 \, x^{3} e^{\left (12 \, x^{2}\right )} + 2700 \, x^{3} e^{\left (8 \, x^{2}\right )} + 202500 \, x^{3} e^{\left (4 \, x^{2}\right )} + 5062500 \, x^{3} + x e^{\left (16 \, x^{2}\right )} + 300 \, x e^{\left (12 \, x^{2}\right )} + 33750 \, x e^{\left (8 \, x^{2}\right )} + 1687500 \, x e^{\left (4 \, x^{2}\right )} + 31640625 \, x + 81\right )}}{81 \, x^{8} + 108 \, x^{6} e^{\left (4 \, x^{2}\right )} + 8100 \, x^{6} + 54 \, x^{4} e^{\left (8 \, x^{2}\right )} + 8100 \, x^{4} e^{\left (4 \, x^{2}\right )} + 303750 \, x^{4} + 12 \, x^{2} e^{\left (12 \, x^{2}\right )} + 2700 \, x^{2} e^{\left (8 \, x^{2}\right )} + 202500 \, x^{2} e^{\left (4 \, x^{2}\right )} + 5062500 \, x^{2} + e^{\left (16 \, x^{2}\right )} + 300 \, e^{\left (12 \, x^{2}\right )} + 33750 \, e^{\left (8 \, x^{2}\right )} + 1687500 \, e^{\left (4 \, x^{2}\right )} + 31640625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 1.00
method | result | size |
risch | \(16 x +\frac {1296}{\left (3 x^{2}+{\mathrm e}^{4 x^{2}}+75\right )^{4}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 179, normalized size = 8.14 \begin {gather*} \frac {16 \, {\left (81 \, x^{9} + 8100 \, x^{7} + 303750 \, x^{5} + 5062500 \, x^{3} + x e^{\left (16 \, x^{2}\right )} + 12 \, {\left (x^{3} + 25 \, x\right )} e^{\left (12 \, x^{2}\right )} + 54 \, {\left (x^{5} + 50 \, x^{3} + 625 \, x\right )} e^{\left (8 \, x^{2}\right )} + 108 \, {\left (x^{7} + 75 \, x^{5} + 1875 \, x^{3} + 15625 \, x\right )} e^{\left (4 \, x^{2}\right )} + 31640625 \, x + 81\right )}}{81 \, x^{8} + 8100 \, x^{6} + 303750 \, x^{4} + 5062500 \, x^{2} + 12 \, {\left (x^{2} + 25\right )} e^{\left (12 \, x^{2}\right )} + 54 \, {\left (x^{4} + 50 \, x^{2} + 625\right )} e^{\left (8 \, x^{2}\right )} + 108 \, {\left (x^{6} + 75 \, x^{4} + 1875 \, x^{2} + 15625\right )} e^{\left (4 \, x^{2}\right )} + e^{\left (16 \, x^{2}\right )} + 31640625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {16\,{\mathrm {e}}^{20\,x^2}-31104\,x+{\mathrm {e}}^{8\,x^2}\,\left (4320\,x^6+324000\,x^4+8100000\,x^2+67500000\right )+{\mathrm {e}}^{16\,x^2}\,\left (240\,x^2+6000\right )+{\mathrm {e}}^{4\,x^2}\,\left (6480\,x^8+648000\,x^6+24300000\,x^4+405000000\,x^2-41472\,x+2531250000\right )+{\mathrm {e}}^{12\,x^2}\,\left (1440\,x^4+72000\,x^2+900000\right )+7593750000\,x^2+607500000\,x^4+24300000\,x^6+486000\,x^8+3888\,x^{10}+37968750000}{{\mathrm {e}}^{20\,x^2}+{\mathrm {e}}^{8\,x^2}\,\left (270\,x^6+20250\,x^4+506250\,x^2+4218750\right )+{\mathrm {e}}^{4\,x^2}\,\left (405\,x^8+40500\,x^6+1518750\,x^4+25312500\,x^2+158203125\right )+{\mathrm {e}}^{16\,x^2}\,\left (15\,x^2+375\right )+{\mathrm {e}}^{12\,x^2}\,\left (90\,x^4+4500\,x^2+56250\right )+474609375\,x^2+37968750\,x^4+1518750\,x^6+30375\,x^8+243\,x^{10}+2373046875} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 88, normalized size = 4.00 \begin {gather*} 16 x + \frac {1296}{81 x^{8} + 8100 x^{6} + 303750 x^{4} + 5062500 x^{2} + \left (12 x^{2} + 300\right ) e^{12 x^{2}} + \left (54 x^{4} + 2700 x^{2} + 33750\right ) e^{8 x^{2}} + \left (108 x^{6} + 8100 x^{4} + 202500 x^{2} + 1687500\right ) e^{4 x^{2}} + e^{16 x^{2}} + 31640625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________