Optimal. Leaf size=23 \[ \frac {4}{\left (1+x-\frac {x}{4+e^3-5 e^8 x}\right )^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.78, antiderivative size = 248, normalized size of antiderivative = 10.78, number of steps used = 9, number of rules used = 5, integrand size = 282, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {2074, 638, 614, 618, 206} \begin {gather*} \frac {60 e^8 \left (5+e^3+5 e^8\right ) \left (-10 e^8 x-5 e^8+e^3+3\right )}{\left (9+6 e^3+e^6+50 e^8+10 e^{11}+25 e^{16}\right ) \left (-5 e^8 x^2+\left (3+e^3-5 e^8\right ) x+e^3+4\right )}-\frac {40 e^8 \left (-15 e^8 \left (5+e^3+5 e^8\right ) x-25 e^{16}+5 e^{11}+10 e^8+2 e^6+15 e^3+27\right )}{\left (20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2\right ) \left (-5 e^8 x^2+\left (3+e^3-5 e^8\right ) x+e^3+4\right )}+\frac {4 \left (\left (4+e^3\right ) \left (4+e^3+5 e^8\right )-5 e^8 \left (5+e^3+5 e^8\right ) x\right )}{\left (-5 e^8 x^2+\left (3+e^3-5 e^8\right ) x+e^3+4\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 614
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {8 \left (-\left (\left (4+e^3\right ) \left (12+7 e^3+e^6+45 e^8+10 e^{11}+25 e^{16}\right )\right )+5 e^8 \left (17+8 e^3+e^6+50 e^8+10 e^{11}+25 e^{16}\right ) x\right )}{\left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )^3}+\frac {40 e^8 \left (9+2 e^3+5 e^8-5 e^8 x\right )}{\left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )^2}\right ) \, dx\\ &=8 \int \frac {-\left (\left (4+e^3\right ) \left (12+7 e^3+e^6+45 e^8+10 e^{11}+25 e^{16}\right )\right )+5 e^8 \left (17+8 e^3+e^6+50 e^8+10 e^{11}+25 e^{16}\right ) x}{\left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )^3} \, dx+\left (40 e^8\right ) \int \frac {9+2 e^3+5 e^8-5 e^8 x}{\left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )^2} \, dx\\ &=\frac {4 \left (\left (4+e^3\right ) \left (4+e^3+5 e^8\right )-5 e^8 \left (5+e^3+5 e^8\right ) x\right )}{\left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )^2}-\frac {40 e^8 \left (27+15 e^3+2 e^6+10 e^8+5 e^{11}-25 e^{16}-15 e^8 \left (5+e^3+5 e^8\right ) x\right )}{\left (20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2\right ) \left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )}-\left (60 e^8 \left (5+e^3+5 e^8\right )\right ) \int \frac {1}{\left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )^2} \, dx+\frac {\left (600 e^{16} \left (5+e^3+5 e^8\right )\right ) \int \frac {1}{4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2} \, dx}{9+6 e^3+e^6+50 e^8+10 e^{11}+25 e^{16}}\\ &=\frac {4 \left (\left (4+e^3\right ) \left (4+e^3+5 e^8\right )-5 e^8 \left (5+e^3+5 e^8\right ) x\right )}{\left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )^2}+\frac {60 e^8 \left (5+e^3+5 e^8\right ) \left (3+e^3-5 e^8-10 e^8 x\right )}{\left (20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2\right ) \left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )}-\frac {40 e^8 \left (27+15 e^3+2 e^6+10 e^8+5 e^{11}-25 e^{16}-15 e^8 \left (5+e^3+5 e^8\right ) x\right )}{\left (20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2\right ) \left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )}-\frac {\left (1200 e^{16} \left (5+e^3+5 e^8\right )\right ) \operatorname {Subst}\left (\int \frac {1}{20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2-x^2} \, dx,x,3+e^3-5 e^8-10 e^8 x\right )}{9+6 e^3+e^6+50 e^8+10 e^{11}+25 e^{16}}-\frac {\left (600 e^{16} \left (5+e^3+5 e^8\right )\right ) \int \frac {1}{4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2} \, dx}{20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2}\\ &=\frac {4 \left (\left (4+e^3\right ) \left (4+e^3+5 e^8\right )-5 e^8 \left (5+e^3+5 e^8\right ) x\right )}{\left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )^2}+\frac {60 e^8 \left (5+e^3+5 e^8\right ) \left (3+e^3-5 e^8-10 e^8 x\right )}{\left (20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2\right ) \left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )}-\frac {40 e^8 \left (27+15 e^3+2 e^6+10 e^8+5 e^{11}-25 e^{16}-15 e^8 \left (5+e^3+5 e^8\right ) x\right )}{\left (20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2\right ) \left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )}-\frac {1200 e^{16} \left (5+e^3+5 e^8\right ) \tanh ^{-1}\left (\frac {3+e^3-5 e^8 (1+2 x)}{\sqrt {9+6 e^3+e^6+50 e^8+10 e^{11}+25 e^{16}}}\right )}{\left (9+6 e^3+e^6+50 e^8+10 e^{11}+25 e^{16}\right )^{3/2}}+\frac {\left (1200 e^{16} \left (5+e^3+5 e^8\right )\right ) \operatorname {Subst}\left (\int \frac {1}{20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2-x^2} \, dx,x,3+e^3-5 e^8-10 e^8 x\right )}{20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2}\\ &=\frac {4 \left (\left (4+e^3\right ) \left (4+e^3+5 e^8\right )-5 e^8 \left (5+e^3+5 e^8\right ) x\right )}{\left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )^2}+\frac {60 e^8 \left (5+e^3+5 e^8\right ) \left (3+e^3-5 e^8-10 e^8 x\right )}{\left (20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2\right ) \left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )}-\frac {40 e^8 \left (27+15 e^3+2 e^6+10 e^8+5 e^{11}-25 e^{16}-15 e^8 \left (5+e^3+5 e^8\right ) x\right )}{\left (20 e^8 \left (4+e^3\right )+\left (3+e^3-5 e^8\right )^2\right ) \left (4+e^3+\left (3+e^3-5 e^8\right ) x-5 e^8 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 38, normalized size = 1.65 \begin {gather*} \frac {4 \left (4+e^3-5 e^8 x\right )^2}{\left (4+3 x+e^3 (1+x)-5 e^8 x (1+x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 112, normalized size = 4.87 \begin {gather*} \frac {4 \, {\left (25 \, x^{2} e^{16} - 10 \, x e^{11} - 40 \, x e^{8} + e^{6} + 8 \, e^{3} + 16\right )}}{9 \, x^{2} + 25 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} e^{16} - 10 \, {\left (x^{3} + 2 \, x^{2} + x\right )} e^{11} - 10 \, {\left (3 \, x^{3} + 7 \, x^{2} + 4 \, x\right )} e^{8} + {\left (x^{2} + 2 \, x + 1\right )} e^{6} + 2 \, {\left (3 \, x^{2} + 7 \, x + 4\right )} e^{3} + 24 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.90, size = 66, normalized size = 2.87
method | result | size |
norman | \(\frac {-40 \,{\mathrm e}^{8} \left (4+{\mathrm e}^{3}\right ) x +100 x^{2} {\mathrm e}^{16}+64+4 \,{\mathrm e}^{6}+32 \,{\mathrm e}^{3}}{\left (5 x^{2} {\mathrm e}^{8}+5 x \,{\mathrm e}^{8}-x \,{\mathrm e}^{3}-{\mathrm e}^{3}-3 x -4\right )^{2}}\) | \(66\) |
risch | \(\frac {\frac {64}{25}+4 x^{2} {\mathrm e}^{16}-\frac {8 \,{\mathrm e}^{8} \left (4+{\mathrm e}^{3}\right ) x}{5}+\frac {4 \,{\mathrm e}^{6}}{25}+\frac {32 \,{\mathrm e}^{3}}{25}}{x^{4} {\mathrm e}^{16}+2 x^{3} {\mathrm e}^{16}+x^{2} {\mathrm e}^{16}-\frac {2 x^{3} {\mathrm e}^{11}}{5}-\frac {4 x^{2} {\mathrm e}^{11}}{5}-\frac {2 x \,{\mathrm e}^{11}}{5}-\frac {6 x^{3} {\mathrm e}^{8}}{5}-\frac {14 x^{2} {\mathrm e}^{8}}{5}-\frac {8 x \,{\mathrm e}^{8}}{5}+\frac {x^{2} {\mathrm e}^{6}}{25}+\frac {2 x \,{\mathrm e}^{6}}{25}+\frac {{\mathrm e}^{6}}{25}+\frac {6 x^{2} {\mathrm e}^{3}}{25}+\frac {14 x \,{\mathrm e}^{3}}{25}+\frac {8 \,{\mathrm e}^{3}}{25}+\frac {9 x^{2}}{25}+\frac {24 x}{25}+\frac {16}{25}}\) | \(129\) |
gosper | \(\frac {100 x^{2} {\mathrm e}^{16}-40 x \,{\mathrm e}^{3} {\mathrm e}^{8}-160 x \,{\mathrm e}^{8}+4 \,{\mathrm e}^{6}+32 \,{\mathrm e}^{3}+64}{25 x^{4} {\mathrm e}^{16}+50 x^{3} {\mathrm e}^{16}+25 x^{2} {\mathrm e}^{16}-10 x^{3} {\mathrm e}^{3} {\mathrm e}^{8}-20 x^{2} {\mathrm e}^{3} {\mathrm e}^{8}-30 x^{3} {\mathrm e}^{8}-10 x \,{\mathrm e}^{3} {\mathrm e}^{8}-70 x^{2} {\mathrm e}^{8}+x^{2} {\mathrm e}^{6}-40 x \,{\mathrm e}^{8}+2 x \,{\mathrm e}^{6}+6 x^{2} {\mathrm e}^{3}+{\mathrm e}^{6}+14 x \,{\mathrm e}^{3}+9 x^{2}+8 \,{\mathrm e}^{3}+24 x +16}\) | \(168\) |
default | \(-\frac {8 \left (\munderset {\textit {\_R} =\RootOf \left (125 \textit {\_Z}^{6} {\mathrm e}^{24}-\left (225 \,{\mathrm e}^{16}-375 \,{\mathrm e}^{24}+75 \,{\mathrm e}^{19}\right ) \textit {\_Z}^{5}-\left (750 \,{\mathrm e}^{16}-375 \,{\mathrm e}^{24}-15 \,{\mathrm e}^{14}-90 \,{\mathrm e}^{11}+225 \,{\mathrm e}^{19}-135 \,{\mathrm e}^{8}\right ) \textit {\_Z}^{4}-\left (9 \,{\mathrm e}^{6}+{\mathrm e}^{9}+825 \,{\mathrm e}^{16}-125 \,{\mathrm e}^{24}-45 \,{\mathrm e}^{14}-300 \,{\mathrm e}^{11}+225 \,{\mathrm e}^{19}+27 \,{\mathrm e}^{3}-495 \,{\mathrm e}^{8}+27\right ) \textit {\_Z}^{3}-\left (30 \,{\mathrm e}^{6}+3 \,{\mathrm e}^{9}+300 \,{\mathrm e}^{16}-45 \,{\mathrm e}^{14}-330 \,{\mathrm e}^{11}+75 \,{\mathrm e}^{19}+99 \,{\mathrm e}^{3}-600 \,{\mathrm e}^{8}+108\right ) \textit {\_Z}^{2}-\left (33 \,{\mathrm e}^{6}+3 \,{\mathrm e}^{9}-15 \,{\mathrm e}^{14}-120 \,{\mathrm e}^{11}+120 \,{\mathrm e}^{3}-240 \,{\mathrm e}^{8}+144\right ) \textit {\_Z} -64-{\mathrm e}^{9}-12 \,{\mathrm e}^{6}-48 \,{\mathrm e}^{3}\right )}{\sum }\frac {\left (48-125 \textit {\_R}^{3} {\mathrm e}^{24}+75 \left (4 \,{\mathrm e}^{16}+{\mathrm e}^{19}\right ) \textit {\_R}^{2}+5 \left (-3 \,{\mathrm e}^{14}-23 \,{\mathrm e}^{11}-44 \,{\mathrm e}^{8}\right ) \textit {\_R} +{\mathrm e}^{9}+11 \,{\mathrm e}^{6}+40 \,{\mathrm e}^{3}\right ) \ln \left (x -\textit {\_R} \right )}{48+72 \textit {\_R} -80 \,{\mathrm e}^{8}+{\mathrm e}^{9}+11 \,{\mathrm e}^{6}+40 \,{\mathrm e}^{3}-5 \,{\mathrm e}^{14}+27 \textit {\_R}^{2} {\mathrm e}^{3}-40 \,{\mathrm e}^{11}-400 \textit {\_R} \,{\mathrm e}^{8}-180 \textit {\_R}^{3} {\mathrm e}^{8}-495 \textit {\_R}^{2} {\mathrm e}^{8}+20 \textit {\_R} \,{\mathrm e}^{6}+27 \textit {\_R}^{2}+66 \textit {\_R} \,{\mathrm e}^{3}-500 \textit {\_R}^{3} {\mathrm e}^{24}+9 \textit {\_R}^{2} {\mathrm e}^{6}+825 \textit {\_R}^{2} {\mathrm e}^{16}+2 \textit {\_R} \,{\mathrm e}^{9}+200 \textit {\_R} \,{\mathrm e}^{16}+\textit {\_R}^{2} {\mathrm e}^{9}+1000 \textit {\_R}^{3} {\mathrm e}^{16}-625 \,{\mathrm e}^{24} \textit {\_R}^{4}-250 \,{\mathrm e}^{24} \textit {\_R}^{5}-45 \textit {\_R}^{2} {\mathrm e}^{14}+125 \textit {\_R}^{4} {\mathrm e}^{19}+300 \textit {\_R}^{3} {\mathrm e}^{19}-20 \textit {\_R}^{3} {\mathrm e}^{14}-220 \textit {\_R} \,{\mathrm e}^{11}+225 \textit {\_R}^{2} {\mathrm e}^{19}-30 \textit {\_R} \,{\mathrm e}^{14}-120 \textit {\_R}^{3} {\mathrm e}^{11}+50 \textit {\_R} \,{\mathrm e}^{19}+375 \textit {\_R}^{4} {\mathrm e}^{16}-125 \textit {\_R}^{2} {\mathrm e}^{24}-300 \textit {\_R}^{2} {\mathrm e}^{11}}\right )}{3}\) | \(445\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.58, size = 107, normalized size = 4.65 \begin {gather*} \frac {4 \, {\left (25 \, x^{2} e^{16} - 10 \, x {\left (e^{11} + 4 \, e^{8}\right )} + e^{6} + 8 \, e^{3} + 16\right )}}{25 \, x^{4} e^{16} + 10 \, x^{3} {\left (5 \, e^{16} - e^{11} - 3 \, e^{8}\right )} + x^{2} {\left (25 \, e^{16} - 20 \, e^{11} - 70 \, e^{8} + e^{6} + 6 \, e^{3} + 9\right )} - 2 \, x {\left (5 \, e^{11} + 20 \, e^{8} - e^{6} - 7 \, e^{3} - 12\right )} + e^{6} + 8 \, e^{3} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.57, size = 92, normalized size = 4.00 \begin {gather*} \frac {4\,{\left ({\mathrm {e}}^3-5\,x\,{\mathrm {e}}^8+4\right )}^2}{25\,{\mathrm {e}}^{16}\,x^4+\left (50\,{\mathrm {e}}^{16}-10\,{\mathrm {e}}^{11}-30\,{\mathrm {e}}^8\right )\,x^3+\left (6\,{\mathrm {e}}^3+{\mathrm {e}}^6-70\,{\mathrm {e}}^8-20\,{\mathrm {e}}^{11}+25\,{\mathrm {e}}^{16}+9\right )\,x^2+\left (14\,{\mathrm {e}}^3+2\,{\mathrm {e}}^6-40\,{\mathrm {e}}^8-10\,{\mathrm {e}}^{11}+24\right )\,x+8\,{\mathrm {e}}^3+{\mathrm {e}}^6+16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 10.01, size = 122, normalized size = 5.30 \begin {gather*} - \frac {- 100 x^{2} e^{16} + x \left (160 e^{8} + 40 e^{11}\right ) - 4 e^{6} - 32 e^{3} - 64}{25 x^{4} e^{16} + x^{3} \left (- 10 e^{11} - 30 e^{8} + 50 e^{16}\right ) + x^{2} \left (- 20 e^{11} - 70 e^{8} + 9 + 6 e^{3} + e^{6} + 25 e^{16}\right ) + x \left (- 10 e^{11} - 40 e^{8} + 24 + 14 e^{3} + 2 e^{6}\right ) + 16 + 8 e^{3} + e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________