Optimal. Leaf size=24 \[ -x+x^2 \left (x+\left (\frac {10}{3}-25 x\right ) \log (2 x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.15, antiderivative size = 64, normalized size of antiderivative = 2.67, number of steps used = 17, number of rules used = 5, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {12, 1594, 2356, 2304, 2305} \begin {gather*} x^4+625 x^4 \log ^2(2 x)-50 x^4 \log (2 x)-\frac {500}{3} x^3 \log ^2(2 x)+\frac {20}{3} x^3 \log (2 x)+\frac {100}{9} x^2 \log ^2(2 x)-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1594
Rule 2304
Rule 2305
Rule 2356
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \left (-9+60 x^2-414 x^3+\left (200 x-2820 x^2+9450 x^3\right ) \log (2 x)+\left (200 x-4500 x^2+22500 x^3\right ) \log ^2(2 x)\right ) \, dx\\ &=-x+\frac {20 x^3}{9}-\frac {23 x^4}{2}+\frac {1}{9} \int \left (200 x-2820 x^2+9450 x^3\right ) \log (2 x) \, dx+\frac {1}{9} \int \left (200 x-4500 x^2+22500 x^3\right ) \log ^2(2 x) \, dx\\ &=-x+\frac {20 x^3}{9}-\frac {23 x^4}{2}+\frac {1}{9} \int x \left (200-2820 x+9450 x^2\right ) \log (2 x) \, dx+\frac {1}{9} \int x \left (200-4500 x+22500 x^2\right ) \log ^2(2 x) \, dx\\ &=-x+\frac {20 x^3}{9}-\frac {23 x^4}{2}+\frac {1}{9} \int \left (200 x \log (2 x)-2820 x^2 \log (2 x)+9450 x^3 \log (2 x)\right ) \, dx+\frac {1}{9} \int \left (200 x \log ^2(2 x)-4500 x^2 \log ^2(2 x)+22500 x^3 \log ^2(2 x)\right ) \, dx\\ &=-x+\frac {20 x^3}{9}-\frac {23 x^4}{2}+\frac {200}{9} \int x \log (2 x) \, dx+\frac {200}{9} \int x \log ^2(2 x) \, dx-\frac {940}{3} \int x^2 \log (2 x) \, dx-500 \int x^2 \log ^2(2 x) \, dx+1050 \int x^3 \log (2 x) \, dx+2500 \int x^3 \log ^2(2 x) \, dx\\ &=-x-\frac {50 x^2}{9}+\frac {1000 x^3}{27}-\frac {617 x^4}{8}+\frac {100}{9} x^2 \log (2 x)-\frac {940}{9} x^3 \log (2 x)+\frac {525}{2} x^4 \log (2 x)+\frac {100}{9} x^2 \log ^2(2 x)-\frac {500}{3} x^3 \log ^2(2 x)+625 x^4 \log ^2(2 x)-\frac {200}{9} \int x \log (2 x) \, dx+\frac {1000}{3} \int x^2 \log (2 x) \, dx-1250 \int x^3 \log (2 x) \, dx\\ &=-x+x^4+\frac {20}{3} x^3 \log (2 x)-50 x^4 \log (2 x)+\frac {100}{9} x^2 \log ^2(2 x)-\frac {500}{3} x^3 \log ^2(2 x)+625 x^4 \log ^2(2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.01, size = 64, normalized size = 2.67 \begin {gather*} -x+x^4+\frac {20}{3} x^3 \log (2 x)-50 x^4 \log (2 x)+\frac {100}{9} x^2 \log ^2(2 x)-\frac {500}{3} x^3 \log ^2(2 x)+625 x^4 \log ^2(2 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 48, normalized size = 2.00 \begin {gather*} x^{4} + \frac {25}{9} \, {\left (225 \, x^{4} - 60 \, x^{3} + 4 \, x^{2}\right )} \log \left (2 \, x\right )^{2} - \frac {10}{3} \, {\left (15 \, x^{4} - 2 \, x^{3}\right )} \log \left (2 \, x\right ) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 58, normalized size = 2.42 \begin {gather*} 625 \, x^{4} \log \left (2 \, x\right )^{2} - 50 \, x^{4} \log \left (2 \, x\right ) - \frac {500}{3} \, x^{3} \log \left (2 \, x\right )^{2} + x^{4} + \frac {20}{3} \, x^{3} \log \left (2 \, x\right ) + \frac {100}{9} \, x^{2} \log \left (2 \, x\right )^{2} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 59, normalized size = 2.46
method | result | size |
derivativedivides | \(-x +x^{4}-50 x^{4} \ln \left (2 x \right )+\frac {20 x^{3} \ln \left (2 x \right )}{3}+625 x^{4} \ln \left (2 x \right )^{2}-\frac {500 x^{3} \ln \left (2 x \right )^{2}}{3}+\frac {100 x^{2} \ln \left (2 x \right )^{2}}{9}\) | \(59\) |
default | \(-x +x^{4}-50 x^{4} \ln \left (2 x \right )+\frac {20 x^{3} \ln \left (2 x \right )}{3}+625 x^{4} \ln \left (2 x \right )^{2}-\frac {500 x^{3} \ln \left (2 x \right )^{2}}{3}+\frac {100 x^{2} \ln \left (2 x \right )^{2}}{9}\) | \(59\) |
norman | \(-x +x^{4}-50 x^{4} \ln \left (2 x \right )+\frac {20 x^{3} \ln \left (2 x \right )}{3}+625 x^{4} \ln \left (2 x \right )^{2}-\frac {500 x^{3} \ln \left (2 x \right )^{2}}{3}+\frac {100 x^{2} \ln \left (2 x \right )^{2}}{9}\) | \(59\) |
risch | \(-x +x^{4}-50 x^{4} \ln \left (2 x \right )+\frac {20 x^{3} \ln \left (2 x \right )}{3}+625 x^{4} \ln \left (2 x \right )^{2}-\frac {500 x^{3} \ln \left (2 x \right )^{2}}{3}+\frac {100 x^{2} \ln \left (2 x \right )^{2}}{9}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 104, normalized size = 4.33 \begin {gather*} \frac {625}{8} \, {\left (8 \, \log \left (2 \, x\right )^{2} - 4 \, \log \left (2 \, x\right ) + 1\right )} x^{4} - \frac {500}{27} \, {\left (9 \, \log \left (2 \, x\right )^{2} - 6 \, \log \left (2 \, x\right ) + 2\right )} x^{3} - \frac {617}{8} \, x^{4} + \frac {50}{9} \, {\left (2 \, \log \left (2 \, x\right )^{2} - 2 \, \log \left (2 \, x\right ) + 1\right )} x^{2} + \frac {1000}{27} \, x^{3} - \frac {50}{9} \, x^{2} + \frac {5}{18} \, {\left (945 \, x^{4} - 376 \, x^{3} + 40 \, x^{2}\right )} \log \left (2 \, x\right ) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.00, size = 54, normalized size = 2.25 \begin {gather*} x^3\,\left (\frac {20\,\ln \left (2\,x\right )}{3}-\frac {500\,{\ln \left (2\,x\right )}^2}{3}\right )-x+x^4\,\left (625\,{\ln \left (2\,x\right )}^2-50\,\ln \left (2\,x\right )+1\right )+\frac {100\,x^2\,{\ln \left (2\,x\right )}^2}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 46, normalized size = 1.92 \begin {gather*} x^{4} - x + \left (- 50 x^{4} + \frac {20 x^{3}}{3}\right ) \log {\left (2 x \right )} + \left (625 x^{4} - \frac {500 x^{3}}{3} + \frac {100 x^{2}}{9}\right ) \log {\left (2 x \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________