Optimal. Leaf size=37 \[ \frac {4 e^{-e^5-i \pi +\frac {4}{x}+2 x}}{\left (2-\sqrt [4]{e}\right ) x} \]
________________________________________________________________________________________
Rubi [B] time = 0.16, antiderivative size = 115, normalized size of antiderivative = 3.11, number of steps used = 1, number of rules used = 1, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.020, Rules used = {2288} \begin {gather*} \frac {8 \left (2-x^2\right ) e^{\frac {2 x^2-e^5 x-x \left (\log \left (2-\sqrt [4]{e}\right )+i \pi \right )+4}{x}}}{x^3 \left (\frac {2 x^2-e^5 x-x \left (\log \left (2-\sqrt [4]{e}\right )+i \pi \right )+4}{x^2}+\frac {-4 x+i \pi +e^5+\log \left (2-\sqrt [4]{e}\right )}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {8 e^{\frac {4-e^5 x+2 x^2-x \left (i \pi +\log \left (2-\sqrt [4]{e}\right )\right )}{x}} \left (2-x^2\right )}{x^3 \left (\frac {e^5+i \pi -4 x+\log \left (2-\sqrt [4]{e}\right )}{x}+\frac {4-e^5 x+2 x^2-x \left (i \pi +\log \left (2-\sqrt [4]{e}\right )\right )}{x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 30, normalized size = 0.81 \begin {gather*} \frac {4 e^{-e^5+\frac {4}{x}+2 x}}{\left (-2+\sqrt [4]{e}\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.07, size = 30, normalized size = 0.81 \begin {gather*} \frac {4 \, e^{\left (\frac {2 \, x^{2} - x e^{5} - x \log \left (e^{\frac {1}{4}} - 2\right ) + 4}{x}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 29, normalized size = 0.78 \begin {gather*} \frac {4 \, e^{\left (\frac {2 \, x^{2} - x e^{5} + 4}{x}\right )}}{x e^{\frac {1}{4}} - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 29, normalized size = 0.78
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{-\frac {x \,{\mathrm e}^{5}-2 x^{2}-4}{x}}}{x \left ({\mathrm e}^{\frac {1}{4}}-2\right )}\) | \(29\) |
gosper | \(\frac {4 \,{\mathrm e}^{-\frac {x \ln \left ({\mathrm e}^{\frac {1}{4}}-2\right )+x \,{\mathrm e}^{5}-2 x^{2}-4}{x}}}{x}\) | \(31\) |
norman | \(\frac {4 \,{\mathrm e}^{-\frac {x \ln \left ({\mathrm e}^{\frac {1}{4}}-2\right )+x \,{\mathrm e}^{5}-2 x^{2}-4}{x}}}{x}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 28, normalized size = 0.76 \begin {gather*} \frac {4 \, e^{\left (2 \, x + \frac {4}{x}\right )}}{x {\left (e^{\left (e^{5} + \frac {1}{4}\right )} - 2 \, e^{\left (e^{5}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.91, size = 26, normalized size = 0.70 \begin {gather*} \frac {4\,{\mathrm {e}}^{-{\mathrm {e}}^5}\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{4/x}}{x\,\left ({\mathrm {e}}^{1/4}-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________