Optimal. Leaf size=26 \[ e^{e^{\left (-4+\frac {4 x^2}{4-x+\log (4)}\right )^2} x^2} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [F] time = 180.00, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 218, normalized size = 8.38 \begin {gather*} e^{\left (\frac {16 \, x^{4} + 32 \, x^{3} - 112 \, x^{2} + {\left (x^{4} + 4 \, x^{2} \log \relax (2)^{2} - 8 \, x^{3} + 16 \, x^{2} - 4 \, {\left (x^{3} - 4 \, x^{2}\right )} \log \relax (2)\right )} e^{\left (\frac {16 \, {\left (x^{4} + 2 \, x^{3} - 7 \, x^{2} - 4 \, {\left (x^{2} + x - 4\right )} \log \relax (2) + 4 \, \log \relax (2)^{2} - 8 \, x + 16\right )}}{x^{2} - 4 \, {\left (x - 4\right )} \log \relax (2) + 4 \, \log \relax (2)^{2} - 8 \, x + 16}\right )} - 64 \, {\left (x^{2} + x - 4\right )} \log \relax (2) + 64 \, \log \relax (2)^{2} - 128 \, x + 256}{x^{2} - 4 \, {\left (x - 4\right )} \log \relax (2) + 4 \, \log \relax (2)^{2} - 8 \, x + 16} - \frac {16 \, {\left (x^{4} + 2 \, x^{3} - 7 \, x^{2} - 4 \, {\left (x^{2} + x - 4\right )} \log \relax (2) + 4 \, \log \relax (2)^{2} - 8 \, x + 16\right )}}{x^{2} - 4 \, {\left (x - 4\right )} \log \relax (2) + 4 \, \log \relax (2)^{2} - 8 \, x + 16}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 2.81, size = 36, normalized size = 1.38
method | result | size |
risch | \({\mathrm e}^{x^{2} {\mathrm e}^{\frac {16 \left (-x^{2}+2 \ln \relax (2)-x +4\right )^{2}}{\left (4+2 \ln \relax (2)-x \right )^{2}}}}\) | \(36\) |
norman | \(\frac {x^{2} {\mathrm e}^{x^{2} {\mathrm e}^{\frac {64 \ln \relax (2)^{2}+2 \left (-32 x^{2}-32 x +128\right ) \ln \relax (2)+16 x^{4}+32 x^{3}-112 x^{2}-128 x +256}{4 \ln \relax (2)^{2}+2 \left (-2 x +8\right ) \ln \relax (2)+x^{2}-8 x +16}}}+\left (4 \ln \relax (2)^{2}+16 \ln \relax (2)+16\right ) {\mathrm e}^{x^{2} {\mathrm e}^{\frac {64 \ln \relax (2)^{2}+2 \left (-32 x^{2}-32 x +128\right ) \ln \relax (2)+16 x^{4}+32 x^{3}-112 x^{2}-128 x +256}{4 \ln \relax (2)^{2}+2 \left (-2 x +8\right ) \ln \relax (2)+x^{2}-8 x +16}}}+\left (-4 \ln \relax (2)-8\right ) x \,{\mathrm e}^{x^{2} {\mathrm e}^{\frac {64 \ln \relax (2)^{2}+2 \left (-32 x^{2}-32 x +128\right ) \ln \relax (2)+16 x^{4}+32 x^{3}-112 x^{2}-128 x +256}{4 \ln \relax (2)^{2}+2 \left (-2 x +8\right ) \ln \relax (2)+x^{2}-8 x +16}}}}{\left (4+2 \ln \relax (2)-x \right )^{2}}\) | \(255\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 5.04, size = 226, normalized size = 8.69 \begin {gather*} e^{\left (28638903918474961204418783933674838490721739172170652529441449702311064005352904159345284265824628375429359509218999720074396860757073376700445026041564579620512874307979212102266801261478978776245040008231745247475930553606737583615358787106474295296 \, x^{2} e^{\left (\frac {256 \, \log \relax (2)^{4}}{x^{2} - 4 \, x {\left (\log \relax (2) + 2\right )} + 4 \, \log \relax (2)^{2} + 16 \, \log \relax (2) + 16} + 16 \, x^{2} + 64 \, x \log \relax (2) + 192 \, \log \relax (2)^{2} + \frac {2048 \, \log \relax (2)^{3}}{x^{2} - 4 \, x {\left (\log \relax (2) + 2\right )} + 4 \, \log \relax (2)^{2} + 16 \, \log \relax (2) + 16} + \frac {512 \, \log \relax (2)^{3}}{x - 2 \, \log \relax (2) - 4} + 160 \, x + \frac {6144 \, \log \relax (2)^{2}}{x^{2} - 4 \, x {\left (\log \relax (2) + 2\right )} + 4 \, \log \relax (2)^{2} + 16 \, \log \relax (2) + 16} + \frac {3200 \, \log \relax (2)^{2}}{x - 2 \, \log \relax (2) - 4} + \frac {8192 \, \log \relax (2)}{x^{2} - 4 \, x {\left (\log \relax (2) + 2\right )} + 4 \, \log \relax (2)^{2} + 16 \, \log \relax (2) + 16} + \frac {6656 \, \log \relax (2)}{x - 2 \, \log \relax (2) - 4} + \frac {4096}{x^{2} - 4 \, x {\left (\log \relax (2) + 2\right )} + 4 \, \log \relax (2)^{2} + 16 \, \log \relax (2) + 16} + \frac {4608}{x - 2 \, \log \relax (2) - 4} + 912\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 12.86, size = 221, normalized size = 8.50 \begin {gather*} {\mathrm {e}}^{{\left (\frac {1}{18446744073709551616}\right )}^{\frac {x^2+x-4}{16\,\ln \relax (2)-8\,x-4\,x\,\ln \relax (2)+4\,{\ln \relax (2)}^2+x^2+16}}\,x^2\,{\mathrm {e}}^{\frac {64\,{\ln \relax (2)}^2}{16\,\ln \relax (2)-8\,x-4\,x\,\ln \relax (2)+4\,{\ln \relax (2)}^2+x^2+16}}\,{\mathrm {e}}^{\frac {16\,x^4}{16\,\ln \relax (2)-8\,x-4\,x\,\ln \relax (2)+4\,{\ln \relax (2)}^2+x^2+16}}\,{\mathrm {e}}^{\frac {32\,x^3}{16\,\ln \relax (2)-8\,x-4\,x\,\ln \relax (2)+4\,{\ln \relax (2)}^2+x^2+16}}\,{\mathrm {e}}^{-\frac {112\,x^2}{16\,\ln \relax (2)-8\,x-4\,x\,\ln \relax (2)+4\,{\ln \relax (2)}^2+x^2+16}}\,{\mathrm {e}}^{\frac {256}{16\,\ln \relax (2)-8\,x-4\,x\,\ln \relax (2)+4\,{\ln \relax (2)}^2+x^2+16}}\,{\mathrm {e}}^{-\frac {128\,x}{16\,\ln \relax (2)-8\,x-4\,x\,\ln \relax (2)+4\,{\ln \relax (2)}^2+x^2+16}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 4.26, size = 70, normalized size = 2.69 \begin {gather*} e^{x^{2} e^{\frac {16 x^{4} + 32 x^{3} - 112 x^{2} - 128 x + \left (- 64 x^{2} - 64 x + 256\right ) \log {\relax (2 )} + 64 \log {\relax (2 )}^{2} + 256}{x^{2} - 8 x + \left (16 - 4 x\right ) \log {\relax (2 )} + 4 \log {\relax (2 )}^{2} + 16}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________