Optimal. Leaf size=14 \[ e^2 \left (-3-5 e^x x\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 18, normalized size of antiderivative = 1.29, number of steps used = 3, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {14, 2288} \begin {gather*} -5 e^{x+2} x \log (x)-3 e^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {3 e^2}{x}-5 e^{2+x} (1+\log (x)+x \log (x))\right ) \, dx\\ &=-3 e^2 \log (x)-5 \int e^{2+x} (1+\log (x)+x \log (x)) \, dx\\ &=-3 e^2 \log (x)-5 e^{2+x} x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 1.29 \begin {gather*} -e^2 \left (3 \log (x)+5 e^x x \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 16, normalized size = 1.14 \begin {gather*} -{\left (5 \, x e^{\left (x + 2\right )} + 3 \, e^{2}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 16, normalized size = 1.14 \begin {gather*} -5 \, x e^{\left (x + 2\right )} \log \relax (x) - 3 \, e^{2} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 17, normalized size = 1.21
method | result | size |
default | \(-5 x \,{\mathrm e}^{2} {\mathrm e}^{x} \ln \relax (x )-3 \,{\mathrm e}^{2} \ln \relax (x )\) | \(17\) |
norman | \(-5 x \,{\mathrm e}^{2} {\mathrm e}^{x} \ln \relax (x )-3 \,{\mathrm e}^{2} \ln \relax (x )\) | \(17\) |
risch | \(-5 x \ln \relax (x ) {\mathrm e}^{2+x}-3 \,{\mathrm e}^{2} \ln \relax (x )\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -5 \, {\left (x e^{2} - e^{2}\right )} e^{x} \log \relax (x) + 5 \, {\rm Ei}\relax (x) e^{2} - 3 \, e^{2} \log \relax (x) - 5 \, e^{\left (x + 2\right )} \log \relax (x) - 5 \, e^{\left (x + 2\right )} + 5 \, \int \frac {{\left (x e^{2} - e^{2}\right )} e^{x}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.29, size = 13, normalized size = 0.93 \begin {gather*} -{\mathrm {e}}^2\,\ln \relax (x)\,\left (5\,x\,{\mathrm {e}}^x+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 22, normalized size = 1.57 \begin {gather*} - 5 x e^{2} e^{x} \log {\relax (x )} - 3 e^{2} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________