Optimal. Leaf size=28 \[ x \left (x-\log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6 x+15 e^4 x^3+3 e^9 x^3+\left (-6-20 e^4 x^2-4 e^9 x^2\right ) \log \left (5 e^{\frac {3}{5 e^4 x+e^9 x}}\right )+\left (5 e^4 x+e^9 x\right ) \log ^2\left (5 e^{\frac {3}{5 e^4 x+e^9 x}}\right )}{5 e^4 x+e^9 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 x+15 e^4 x^3+3 e^9 x^3+\left (-6-20 e^4 x^2-4 e^9 x^2\right ) \log \left (5 e^{\frac {3}{5 e^4 x+e^9 x}}\right )+\left (5 e^4 x+e^9 x\right ) \log ^2\left (5 e^{\frac {3}{5 e^4 x+e^9 x}}\right )}{\left (5 e^4+e^9\right ) x} \, dx\\ &=\int \frac {6 x+\left (15 e^4+3 e^9\right ) x^3+\left (-6-20 e^4 x^2-4 e^9 x^2\right ) \log \left (5 e^{\frac {3}{5 e^4 x+e^9 x}}\right )+\left (5 e^4 x+e^9 x\right ) \log ^2\left (5 e^{\frac {3}{5 e^4 x+e^9 x}}\right )}{\left (5 e^4+e^9\right ) x} \, dx\\ &=\frac {\int \frac {6 x+\left (15 e^4+3 e^9\right ) x^3+\left (-6-20 e^4 x^2-4 e^9 x^2\right ) \log \left (5 e^{\frac {3}{5 e^4 x+e^9 x}}\right )+\left (5 e^4 x+e^9 x\right ) \log ^2\left (5 e^{\frac {3}{5 e^4 x+e^9 x}}\right )}{x} \, dx}{e^4 \left (5+e^5\right )}\\ &=\frac {\int \left (3 \left (2+e^4 \left (5+e^5\right ) x^2\right )+\frac {2 \left (-3-2 e^4 \left (5+e^5\right ) x^2\right ) \log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right )}{x}+e^4 \left (5+e^5\right ) \log ^2\left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right )\right ) \, dx}{e^4 \left (5+e^5\right )}\\ &=\frac {2 \int \frac {\left (-3-2 e^4 \left (5+e^5\right ) x^2\right ) \log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right )}{x} \, dx}{e^4 \left (5+e^5\right )}+\frac {3 \int \left (2+e^4 \left (5+e^5\right ) x^2\right ) \, dx}{e^4 \left (5+e^5\right )}+\int \log ^2\left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right ) \, dx\\ &=\frac {6 x}{e^4 \left (5+e^5\right )}+x^3+\frac {2 \int \left (-\frac {3 \log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right )}{x}+2 e^4 \left (-5-e^5\right ) x \log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right )\right ) \, dx}{e^4 \left (5+e^5\right )}+\int \log ^2\left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right ) \, dx\\ &=\frac {6 x}{e^4 \left (5+e^5\right )}+x^3-4 \int x \log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right ) \, dx-\frac {6 \int \frac {\log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right )}{x} \, dx}{e^4 \left (5+e^5\right )}+\int \log ^2\left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right ) \, dx\\ &=\frac {6 x}{e^4 \left (5+e^5\right )}+x^3-2 x^2 \log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right )-\frac {6 \log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right ) \log (x)}{e^4 \left (5+e^5\right )}+2 \int -\frac {3}{e^4 \left (5+e^5\right )} \, dx+\frac {6 \int -\frac {3 \log (x)}{e^4 \left (5+e^5\right ) x^2} \, dx}{e^4 \left (5+e^5\right )}+\int \log ^2\left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right ) \, dx\\ &=x^3-2 x^2 \log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right )-\frac {6 \log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right ) \log (x)}{e^4 \left (5+e^5\right )}-\frac {18 \int \frac {\log (x)}{x^2} \, dx}{e^8 \left (5+e^5\right )^2}+\int \log ^2\left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right ) \, dx\\ &=\frac {18}{e^8 \left (5+e^5\right )^2 x}+x^3-2 x^2 \log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right )+\frac {18 \log (x)}{e^8 \left (5+e^5\right )^2 x}-\frac {6 \log \left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right ) \log (x)}{e^4 \left (5+e^5\right )}+\int \log ^2\left (5 e^{\frac {3}{e^4 \left (5+e^5\right ) x}}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 125, normalized size = 4.46 \begin {gather*} \frac {18+25 e^8 x^4+10 e^{13} x^4+e^{18} x^4-2 e^4 \left (5+e^5\right ) x \left (3+5 e^4 x^2+e^9 x^2\right ) \log \left (5 e^{\frac {3}{5 e^4 x+e^9 x}}\right )+e^8 \left (5+e^5\right )^2 x^2 \log ^2\left (5 e^{\frac {3}{5 e^4 x+e^9 x}}\right )}{e^8 \left (5+e^5\right )^2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 105, normalized size = 3.75 \begin {gather*} \frac {x^{4} e^{18} + 10 \, x^{4} e^{13} + 25 \, x^{4} e^{8} - 6 \, x^{2} e^{9} - 30 \, x^{2} e^{4} + {\left (x^{2} e^{18} + 10 \, x^{2} e^{13} + 25 \, x^{2} e^{8}\right )} \log \relax (5)^{2} - 2 \, {\left (x^{3} e^{18} + 10 \, x^{3} e^{13} + 25 \, x^{3} e^{8}\right )} \log \relax (5) + 9}{x e^{18} + 10 \, x e^{13} + 25 \, x e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 253, normalized size = 9.04 \begin {gather*} \frac {x^{3} e^{54} + 30 \, x^{3} e^{49} + 375 \, x^{3} e^{44} + 2500 \, x^{3} e^{39} + 9375 \, x^{3} e^{34} + 18750 \, x^{3} e^{29} + 15625 \, x^{3} e^{24} - 2 \, x^{2} e^{54} \log \relax (5) - 60 \, x^{2} e^{49} \log \relax (5) - 750 \, x^{2} e^{44} \log \relax (5) - 5000 \, x^{2} e^{39} \log \relax (5) - 18750 \, x^{2} e^{34} \log \relax (5) - 37500 \, x^{2} e^{29} \log \relax (5) - 31250 \, x^{2} e^{24} \log \relax (5) + x e^{54} \log \relax (5)^{2} + 30 \, x e^{49} \log \relax (5)^{2} + 375 \, x e^{44} \log \relax (5)^{2} + 2500 \, x e^{39} \log \relax (5)^{2} + 9375 \, x e^{34} \log \relax (5)^{2} + 18750 \, x e^{29} \log \relax (5)^{2} + 15625 \, x e^{24} \log \relax (5)^{2} - 6 \, x e^{45} - 150 \, x e^{40} - 1500 \, x e^{35} - 7500 \, x e^{30} - 18750 \, x e^{25} - 18750 \, x e^{20}}{e^{54} + 30 \, e^{49} + 375 \, e^{44} + 2500 \, e^{39} + 9375 \, e^{34} + 18750 \, e^{29} + 15625 \, e^{24}} + \frac {9}{x {\left (e^{18} + 10 \, e^{13} + 25 \, e^{8}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.16, size = 66, normalized size = 2.36
method | result | size |
risch | \(x \ln \left ({\mathrm e}^{\frac {3}{x \left (5 \,{\mathrm e}^{4}+{\mathrm e}^{9}\right )}}\right )^{2}+\left (2 x \ln \relax (5)-2 x^{2}\right ) \ln \left ({\mathrm e}^{\frac {3}{x \left (5 \,{\mathrm e}^{4}+{\mathrm e}^{9}\right )}}\right )+x \ln \relax (5)^{2}-2 x^{2} \ln \relax (5)+x^{3}\) | \(66\) |
default | \(\frac {25 x \left (\ln \left (5 \,{\mathrm e}^{\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}}\right )-\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}\right )^{2}}{\left ({\mathrm e}^{5}+5\right )^{2}}+\frac {10 \,{\mathrm e}^{-4} {\mathrm e}^{9} x \left (\ln \left (5 \,{\mathrm e}^{\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}}\right )-\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}\right )^{2}}{\left ({\mathrm e}^{5}+5\right )^{2}}+\frac {{\mathrm e}^{-8} {\mathrm e}^{18} x \left (\ln \left (5 \,{\mathrm e}^{\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}}\right )-\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}\right )^{2}}{\left ({\mathrm e}^{5}+5\right )^{2}}+\frac {30 \,{\mathrm e}^{-4} \left (\ln \left (5 \,{\mathrm e}^{\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}}\right )-\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}\right ) \ln \relax (x )}{\left ({\mathrm e}^{5}+5\right )^{2}}+\frac {6 \,{\mathrm e}^{-8} \left (\ln \left (5 \,{\mathrm e}^{\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}}\right )-\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}\right ) \ln \relax (x ) {\mathrm e}^{9}}{\left ({\mathrm e}^{5}+5\right )^{2}}-\frac {9 \,{\mathrm e}^{-8}}{\left ({\mathrm e}^{5}+5\right )^{2} x}+\frac {3 \,{\mathrm e}^{-4} \left (\frac {x^{3} {\mathrm e}^{4} {\mathrm e}^{5}}{3}+\frac {5 x^{3} {\mathrm e}^{4}}{3}+2 x \right )}{{\mathrm e}^{5}+5}-\frac {10 \ln \left (5 \,{\mathrm e}^{\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}}\right ) x^{2}}{{\mathrm e}^{5}+5}-\frac {2 \,{\mathrm e}^{-4} {\mathrm e}^{9} \ln \left (5 \,{\mathrm e}^{\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}}\right ) x^{2}}{{\mathrm e}^{5}+5}-\frac {6 \,{\mathrm e}^{-4} \ln \relax (x ) \ln \left (5 \,{\mathrm e}^{\frac {3}{x \,{\mathrm e}^{4} {\mathrm e}^{5}+5 x \,{\mathrm e}^{4}}}\right )}{{\mathrm e}^{5}+5}-\frac {30 \,{\mathrm e}^{-4} {\mathrm e}^{5} x}{\left ({\mathrm e}^{5}+5\right )^{3}}-\frac {6 \,{\mathrm e}^{-8} {\mathrm e}^{5} {\mathrm e}^{9} x}{\left ({\mathrm e}^{5}+5\right )^{3}}+\frac {18 \,{\mathrm e}^{-8} {\mathrm e}^{5} \ln \relax (x )}{\left ({\mathrm e}^{5}+5\right )^{3} x}+\frac {18 \,{\mathrm e}^{-8} {\mathrm e}^{5}}{\left ({\mathrm e}^{5}+5\right )^{3} x}-\frac {150 \,{\mathrm e}^{-4} x}{\left ({\mathrm e}^{5}+5\right )^{3}}-\frac {30 \,{\mathrm e}^{-8} {\mathrm e}^{9} x}{\left ({\mathrm e}^{5}+5\right )^{3}}+\frac {90 \,{\mathrm e}^{-8} \ln \relax (x )}{\left ({\mathrm e}^{5}+5\right )^{3} x}+\frac {90 \,{\mathrm e}^{-8}}{\left ({\mathrm e}^{5}+5\right )^{3} x}\) | \(540\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 512, normalized size = 18.29 \begin {gather*} \frac {x^{3} e^{9}}{e^{9} + 5 \, e^{4}} + \frac {5 \, x^{3} e^{4}}{e^{9} + 5 \, e^{4}} - \frac {2 \, x^{2} e^{9} \log \left (5 \, e^{\left (\frac {3}{x e^{9} + 5 \, x e^{4}}\right )}\right )}{e^{9} + 5 \, e^{4}} - \frac {10 \, x^{2} e^{4} \log \left (5 \, e^{\left (\frac {3}{x e^{9} + 5 \, x e^{4}}\right )}\right )}{e^{9} + 5 \, e^{4}} + \frac {x e^{9} \log \left (5 \, e^{\left (\frac {3}{x e^{9} + 5 \, x e^{4}}\right )}\right )^{2}}{e^{9} + 5 \, e^{4}} + \frac {5 \, x e^{4} \log \left (5 \, e^{\left (\frac {3}{x e^{9} + 5 \, x e^{4}}\right )}\right )^{2}}{e^{9} + 5 \, e^{4}} - 6 \, {\left (\frac {3 \, {\left (\frac {\log \relax (x)}{{\left (x e^{9} + 5 \, x e^{4}\right )} {\left (e^{9} + 5 \, e^{4}\right )}} + \frac {1}{x {\left (e^{9} + 5 \, e^{4}\right )}^{2}}\right )} {\left (e^{9} + 5 \, e^{4}\right )}}{e^{18} + 10 \, e^{13} + 25 \, e^{8}} - \frac {\log \relax (x) \log \left (5 \, e^{\left (\frac {3}{x e^{9} + 5 \, x e^{4}}\right )}\right )}{e^{18} + 10 \, e^{13} + 25 \, e^{8}}\right )} e^{9} - 30 \, {\left (\frac {3 \, {\left (\frac {\log \relax (x)}{{\left (x e^{9} + 5 \, x e^{4}\right )} {\left (e^{9} + 5 \, e^{4}\right )}} + \frac {1}{x {\left (e^{9} + 5 \, e^{4}\right )}^{2}}\right )} {\left (e^{9} + 5 \, e^{4}\right )}}{e^{18} + 10 \, e^{13} + 25 \, e^{8}} - \frac {\log \relax (x) \log \left (5 \, e^{\left (\frac {3}{x e^{9} + 5 \, x e^{4}}\right )}\right )}{e^{18} + 10 \, e^{13} + 25 \, e^{8}}\right )} e^{4} - \frac {6 \, x e^{9}}{e^{18} + 10 \, e^{13} + 25 \, e^{8}} - \frac {30 \, x e^{4}}{e^{18} + 10 \, e^{13} + 25 \, e^{8}} - \frac {6 \, \log \left (x e^{9} + 5 \, x e^{4}\right ) \log \left (5 \, e^{\left (\frac {3}{x e^{9} + 5 \, x e^{4}}\right )}\right )}{e^{9} + 5 \, e^{4}} + \frac {6 \, x}{e^{9} + 5 \, e^{4}} + \frac {18 \, \log \left (x e^{9} + 5 \, x e^{4}\right )}{{\left (x e^{9} + 5 \, x e^{4}\right )} {\left (e^{9} + 5 \, e^{4}\right )}} + \frac {18}{{\left (x e^{9} + 5 \, x e^{4}\right )} {\left (e^{9} + 5 \, e^{4}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.41, size = 75, normalized size = 2.68 \begin {gather*} \frac {{\mathrm {e}}^8\,{\left ({\mathrm {e}}^5+5\right )}^2\,x^5-2\,{\mathrm {e}}^8\,\ln \relax (5)\,{\left ({\mathrm {e}}^5+5\right )}^2\,x^4+{\mathrm {e}}^4\,\left ({\mathrm {e}}^5+5\right )\,\left (5\,{\mathrm {e}}^4\,{\ln \relax (5)}^2+{\mathrm {e}}^9\,{\ln \relax (5)}^2-6\right )\,x^3+9\,x}{x^2\,\left (25\,{\mathrm {e}}^8+10\,{\mathrm {e}}^{13}+{\mathrm {e}}^{18}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.66, size = 104, normalized size = 3.71 \begin {gather*} \frac {x^{3} \left (25 e^{8} + 10 e^{13} + e^{18}\right ) + x^{2} \left (- 2 e^{18} \log {\relax (5 )} - 20 e^{13} \log {\relax (5 )} - 50 e^{8} \log {\relax (5 )}\right ) + x \left (- 6 e^{9} - 30 e^{4} + 25 e^{8} \log {\relax (5 )}^{2} + 10 e^{13} \log {\relax (5 )}^{2} + e^{18} \log {\relax (5 )}^{2}\right ) + \frac {9}{x}}{25 e^{8} + 10 e^{13} + e^{18}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________