Optimal. Leaf size=19 \[ x+4 \left (5+\left (16+\left (-2+\frac {1}{e^2}\right ) x^2\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 36, normalized size of antiderivative = 1.89, number of steps used = 4, number of rules used = 1, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {12} \begin {gather*} -\frac {16 x^4}{e^2}+\frac {4 x^4}{e^4}+16 x^4+\frac {128 x^2}{e^2}-256 x^2+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (16 x^3+e^2 \left (256 x-64 x^3\right )+e^4 \left (1-512 x+64 x^3\right )\right ) \, dx}{e^4}\\ &=\frac {4 x^4}{e^4}+\frac {\int \left (256 x-64 x^3\right ) \, dx}{e^2}+\int \left (1-512 x+64 x^3\right ) \, dx\\ &=x-256 x^2+\frac {128 x^2}{e^2}+16 x^4+\frac {4 x^4}{e^4}-\frac {16 x^4}{e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 34, normalized size = 1.79 \begin {gather*} x-\frac {128 \left (-1+2 e^2\right ) x^2}{e^2}+\frac {4 \left (-1+2 e^2\right )^2 x^4}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 37, normalized size = 1.95 \begin {gather*} {\left (4 \, x^{4} + {\left (16 \, x^{4} - 256 \, x^{2} + x\right )} e^{4} - 16 \, {\left (x^{4} - 8 \, x^{2}\right )} e^{2}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 37, normalized size = 1.95 \begin {gather*} {\left (4 \, x^{4} + {\left (16 \, x^{4} - 256 \, x^{2} + x\right )} e^{4} - 16 \, {\left (x^{4} - 8 \, x^{2}\right )} e^{2}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 34, normalized size = 1.79
method | result | size |
risch | \(16 x^{4}-16 \,{\mathrm e}^{-2} x^{4}-256 x^{2}+4 \,{\mathrm e}^{-4} x^{4}+x +128 x^{2} {\mathrm e}^{-2}\) | \(34\) |
norman | \(\left (\left (-256 \,{\mathrm e}^{2}+128\right ) x^{2}+{\mathrm e}^{2} x +4 \left (4 \,{\mathrm e}^{4}-4 \,{\mathrm e}^{2}+1\right ) {\mathrm e}^{-2} x^{4}\right ) {\mathrm e}^{-2}\) | \(42\) |
default | \({\mathrm e}^{-4} \left ({\mathrm e}^{4} \left (16 x^{4}-256 x^{2}+x \right )+{\mathrm e}^{2} \left (-16 x^{4}+128 x^{2}\right )+4 x^{4}\right )\) | \(43\) |
gosper | \(x \left (16 x^{3} {\mathrm e}^{4}-16 x^{3} {\mathrm e}^{2}-256 x \,{\mathrm e}^{4}+4 x^{3}+{\mathrm e}^{4}+128 \,{\mathrm e}^{2} x \right ) {\mathrm e}^{-4}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 37, normalized size = 1.95 \begin {gather*} {\left (4 \, x^{4} + {\left (16 \, x^{4} - 256 \, x^{2} + x\right )} e^{4} - 16 \, {\left (x^{4} - 8 \, x^{2}\right )} e^{2}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 30, normalized size = 1.58 \begin {gather*} 4\,{\mathrm {e}}^{-4}\,{\left (2\,{\mathrm {e}}^2-1\right )}^2\,x^4-128\,{\mathrm {e}}^{-2}\,\left (2\,{\mathrm {e}}^2-1\right )\,x^2+x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 32, normalized size = 1.68 \begin {gather*} \frac {x^{4} \left (- 16 e^{2} + 4 + 16 e^{4}\right )}{e^{4}} + \frac {x^{2} \left (128 - 256 e^{2}\right )}{e^{2}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________