Optimal. Leaf size=25 \[ \left (3+e^{\frac {x}{8 (5+x) \log (2 x)}}-x\right ) x \]
________________________________________________________________________________________
Rubi [B] time = 1.17, antiderivative size = 97, normalized size of antiderivative = 3.88, number of steps used = 5, number of rules used = 4, integrand size = 93, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {27, 12, 6742, 2288} \begin {gather*} \frac {e^{\frac {x}{8 (x+5) \log (2 x)}} \left (x^2+5 x-5 x \log (2 x)\right )}{(x+5)^2 \left (\frac {1}{(x+5) \log ^2(2 x)}+\frac {x}{(x+5)^2 \log (2 x)}-\frac {1}{(x+5) \log (2 x)}\right ) \log ^2(2 x)}-\frac {1}{4} (3-2 x)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (600-160 x-136 x^2-16 x^3\right ) \log ^2(2 x)+e^{\frac {x}{(40+8 x) \log (2 x)}} \left (-5 x-x^2+5 x \log (2 x)+\left (200+80 x+8 x^2\right ) \log ^2(2 x)\right )}{8 (5+x)^2 \log ^2(2 x)} \, dx\\ &=\frac {1}{8} \int \frac {\left (600-160 x-136 x^2-16 x^3\right ) \log ^2(2 x)+e^{\frac {x}{(40+8 x) \log (2 x)}} \left (-5 x-x^2+5 x \log (2 x)+\left (200+80 x+8 x^2\right ) \log ^2(2 x)\right )}{(5+x)^2 \log ^2(2 x)} \, dx\\ &=\frac {1}{8} \int \left (-8 (-3+2 x)+\frac {e^{\frac {x}{8 (5+x) \log (2 x)}} \left (-5 x-x^2+5 x \log (2 x)+200 \log ^2(2 x)+80 x \log ^2(2 x)+8 x^2 \log ^2(2 x)\right )}{(5+x)^2 \log ^2(2 x)}\right ) \, dx\\ &=-\frac {1}{4} (3-2 x)^2+\frac {1}{8} \int \frac {e^{\frac {x}{8 (5+x) \log (2 x)}} \left (-5 x-x^2+5 x \log (2 x)+200 \log ^2(2 x)+80 x \log ^2(2 x)+8 x^2 \log ^2(2 x)\right )}{(5+x)^2 \log ^2(2 x)} \, dx\\ &=-\frac {1}{4} (3-2 x)^2+\frac {e^{\frac {x}{8 (5+x) \log (2 x)}} \left (5 x+x^2-5 x \log (2 x)\right )}{(5+x)^2 \left (\frac {1}{(5+x) \log ^2(2 x)}+\frac {x}{(5+x)^2 \log (2 x)}-\frac {1}{(5+x) \log (2 x)}\right ) \log ^2(2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 26, normalized size = 1.04 \begin {gather*} -x \left (-3-e^{\frac {x}{8 (5+x) \log (2 x)}}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 26, normalized size = 1.04 \begin {gather*} -x^{2} + x e^{\left (\frac {x}{8 \, {\left (x + 5\right )} \log \left (2 \, x\right )}\right )} + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 30, normalized size = 1.20 \begin {gather*} -x^{2} + x e^{\left (\frac {x}{8 \, {\left (x \log \left (2 \, x\right ) + 5 \, \log \left (2 \, x\right )\right )}}\right )} + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.71, size = 27, normalized size = 1.08
method | result | size |
risch | \(-x^{2}+{\mathrm e}^{\frac {x}{8 \left (5+x \right ) \ln \left (2 x \right )}} x +3 x\) | \(27\) |
default | \(3 x +\frac {40 \ln \relax (2) {\mathrm e}^{\frac {x}{8 \left (5+x \right ) \left (\ln \relax (2)+\ln \relax (x )\right )}} x +40 \ln \relax (x ) {\mathrm e}^{\frac {x}{8 \left (5+x \right ) \left (\ln \relax (2)+\ln \relax (x )\right )}} x +8 x^{2} \ln \relax (2) {\mathrm e}^{\frac {x}{8 \left (5+x \right ) \left (\ln \relax (2)+\ln \relax (x )\right )}}+8 \ln \relax (x ) x^{2} {\mathrm e}^{\frac {x}{8 \left (5+x \right ) \left (\ln \relax (2)+\ln \relax (x )\right )}}}{8 \left (5+x \right ) \left (\ln \relax (2)+\ln \relax (x )\right )}-x^{2}\) | \(113\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.35, size = 31, normalized size = 1.24 \begin {gather*} x\,\left ({\mathrm {e}}^{\frac {x}{40\,\ln \relax (2)+40\,\ln \relax (x)+8\,x\,\ln \relax (2)+8\,x\,\ln \relax (x)}}-x+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 51.16, size = 20, normalized size = 0.80 \begin {gather*} - x^{2} + x e^{\frac {x}{\left (8 x + 40\right ) \log {\left (2 x \right )}}} + 3 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________