Optimal. Leaf size=29 \[ 2 (5-x)-\log (4)-\frac {\log \left (2 \left (e^2-x\right )^2\right )}{e^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 17, normalized size of antiderivative = 0.59, number of steps used = 4, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {12, 186, 43} \begin {gather*} -2 x-\frac {2 \log \left (e^2-x\right )}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 186
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {2+e^4 \left (-2 e^2+2 x\right )}{e^2-x} \, dx}{e^4}\\ &=\frac {\int \frac {2 \left (1-e^6\right )+2 e^4 x}{e^2-x} \, dx}{e^4}\\ &=\frac {\int \left (-2 e^4+\frac {2}{e^2-x}\right ) \, dx}{e^4}\\ &=-2 x-\frac {2 \log \left (e^2-x\right )}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 26, normalized size = 0.90 \begin {gather*} \frac {2 \left (-4+e^6-e^4 x-\log \left (e^2-x\right )\right )}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 16, normalized size = 0.55 \begin {gather*} -2 \, {\left (x e^{4} + \log \left (x - e^{2}\right )\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 17, normalized size = 0.59 \begin {gather*} -2 \, {\left (x e^{4} + \log \left ({\left | x - e^{2} \right |}\right )\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 16, normalized size = 0.55
method | result | size |
risch | \(-2 x -2 \,{\mathrm e}^{-4} \ln \left (x -{\mathrm e}^{2}\right )\) | \(16\) |
norman | \(-2 x -2 \,{\mathrm e}^{-4} \ln \left ({\mathrm e}^{2}-x \right )\) | \(18\) |
default | \({\mathrm e}^{-4} \left (-2 x \,{\mathrm e}^{4}-2 \ln \left (x -{\mathrm e}^{2}\right )\right )\) | \(21\) |
meijerg | \(-2 \,{\mathrm e}^{-4} \ln \left (1-x \,{\mathrm e}^{-2}\right )+2 \,{\mathrm e}^{2} \ln \left (1-x \,{\mathrm e}^{-2}\right )+2 \,{\mathrm e}^{2} \left (-x \,{\mathrm e}^{-2}-\ln \left (1-x \,{\mathrm e}^{-2}\right )\right )\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 16, normalized size = 0.55 \begin {gather*} -2 \, {\left (x e^{4} + \log \left (x - e^{2}\right )\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 15, normalized size = 0.52 \begin {gather*} -2\,x-2\,\ln \left (x-{\mathrm {e}}^2\right )\,{\mathrm {e}}^{-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 15, normalized size = 0.52 \begin {gather*} - 2 x - \frac {2 \log {\left (x - e^{2} \right )}}{e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________