Optimal. Leaf size=22 \[ -\frac {x}{4}+\left (2-\frac {5}{6} e^{-x} x^2\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 30, normalized size of antiderivative = 1.36, number of steps used = 21, number of rules used = 5, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {12, 6688, 2196, 2176, 2194} \begin {gather*} \frac {25}{36} e^{-2 x} x^4-\frac {10}{3} e^{-x} x^2-\frac {x}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{36} \int e^{-2 x} x^2 \left (-\frac {9 e^{2 x}}{x^2}+100 x-50 x^2+\frac {3 e^x (-80+40 x)}{x}\right ) \, dx\\ &=\frac {1}{36} \int \left (-9+120 e^{-x} (-2+x) x-50 e^{-2 x} (-2+x) x^3\right ) \, dx\\ &=-\frac {x}{4}-\frac {25}{18} \int e^{-2 x} (-2+x) x^3 \, dx+\frac {10}{3} \int e^{-x} (-2+x) x \, dx\\ &=-\frac {x}{4}-\frac {25}{18} \int \left (-2 e^{-2 x} x^3+e^{-2 x} x^4\right ) \, dx+\frac {10}{3} \int \left (-2 e^{-x} x+e^{-x} x^2\right ) \, dx\\ &=-\frac {x}{4}-\frac {25}{18} \int e^{-2 x} x^4 \, dx+\frac {25}{9} \int e^{-2 x} x^3 \, dx+\frac {10}{3} \int e^{-x} x^2 \, dx-\frac {20}{3} \int e^{-x} x \, dx\\ &=-\frac {x}{4}+\frac {20 e^{-x} x}{3}-\frac {10}{3} e^{-x} x^2-\frac {25}{18} e^{-2 x} x^3+\frac {25}{36} e^{-2 x} x^4-\frac {25}{9} \int e^{-2 x} x^3 \, dx+\frac {25}{6} \int e^{-2 x} x^2 \, dx-\frac {20}{3} \int e^{-x} \, dx+\frac {20}{3} \int e^{-x} x \, dx\\ &=\frac {20 e^{-x}}{3}-\frac {x}{4}-\frac {25}{12} e^{-2 x} x^2-\frac {10}{3} e^{-x} x^2+\frac {25}{36} e^{-2 x} x^4+\frac {25}{6} \int e^{-2 x} x \, dx-\frac {25}{6} \int e^{-2 x} x^2 \, dx+\frac {20}{3} \int e^{-x} \, dx\\ &=-\frac {x}{4}-\frac {25}{12} e^{-2 x} x-\frac {10}{3} e^{-x} x^2+\frac {25}{36} e^{-2 x} x^4+\frac {25}{12} \int e^{-2 x} \, dx-\frac {25}{6} \int e^{-2 x} x \, dx\\ &=-\frac {25}{24} e^{-2 x}-\frac {x}{4}-\frac {10}{3} e^{-x} x^2+\frac {25}{36} e^{-2 x} x^4-\frac {25}{12} \int e^{-2 x} \, dx\\ &=-\frac {x}{4}-\frac {10}{3} e^{-x} x^2+\frac {25}{36} e^{-2 x} x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 28, normalized size = 1.27 \begin {gather*} \frac {1}{36} \left (-9 x-120 e^{-x} x^2+25 e^{-2 x} x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 59, normalized size = 2.68 \begin {gather*} \frac {1}{4} \, {\left (25 \, x^{2} - x e^{\left (2 \, x + \log \relax (3) + \log \left (\frac {3}{x^{2}}\right )\right )} - 40 \, x e^{\left (x + \frac {1}{2} \, \log \relax (3) + \frac {1}{2} \, \log \left (\frac {3}{x^{2}}\right )\right )}\right )} e^{\left (-2 \, x - \log \relax (3) - \log \left (\frac {3}{x^{2}}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 22, normalized size = 1.00 \begin {gather*} \frac {25}{36} \, x^{4} e^{\left (-2 \, x\right )} - \frac {10}{3} \, x^{2} e^{\left (-x\right )} - \frac {1}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.14, size = 56, normalized size = 2.55
method | result | size |
risch | \(-\frac {x}{4}+\frac {10 x^{2} {\mathrm e}^{-x} {\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}} {\mathrm e}^{-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}}{2}}}{3}+\frac {25 \,{\mathrm e}^{-2 x} x^{4}}{36}\) | \(56\) |
default | \(-\frac {x}{4}-10 \,{\mathrm e}^{-\ln \left (\frac {3}{x^{2}}\right )-2 \ln \relax (x )-x} \left (-\ln \left (\frac {3}{x^{2}}\right )-2 \ln \relax (x )-x \right )^{2}-10 \,{\mathrm e}^{-\ln \left (\frac {3}{x^{2}}\right )-2 \ln \relax (x )-x} \left (\ln \left (\frac {3}{x^{2}}\right )+2 \ln \relax (x )\right )^{2}-20 \,{\mathrm e}^{-\ln \left (\frac {3}{x^{2}}\right )-2 \ln \relax (x )-x} \left (\ln \left (\frac {3}{x^{2}}\right )+2 \ln \relax (x )\right )-20 \left (\ln \left (\frac {3}{x^{2}}\right )+2 \ln \relax (x )\right ) \left ({\mathrm e}^{-\ln \left (\frac {3}{x^{2}}\right )-2 \ln \relax (x )-x} \left (-\ln \left (\frac {3}{x^{2}}\right )-2 \ln \relax (x )-x \right )-{\mathrm e}^{-\ln \left (\frac {3}{x^{2}}\right )-2 \ln \relax (x )-x}\right )+\frac {25 \,{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x \right )^{4}}{64}+\frac {25 \,{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (\ln \left (\frac {3}{x^{2}}\right )+2 \ln \relax (x )\right )^{3}}{2}+\frac {25 \,{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (\ln \left (\frac {3}{x^{2}}\right )+2 \ln \relax (x )\right )^{4}}{4}+\frac {75 \left (\ln \left (\frac {3}{x^{2}}\right )+2 \ln \relax (x )\right )^{2} \left ({\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x \right )-{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x}\right )}{4}+\frac {25 \left (\ln \left (\frac {3}{x^{2}}\right )+2 \ln \relax (x )\right )^{3} \left ({\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x \right )-{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x}\right )}{2}+\frac {75 \left (\ln \left (\frac {3}{x^{2}}\right )+2 \ln \relax (x )\right ) \left ({\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x \right )^{2}-2 \,{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x \right )+2 \,{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x}\right )}{8}+\frac {75 \left (\ln \left (\frac {3}{x^{2}}\right )+2 \ln \relax (x )\right )^{2} \left ({\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x \right )^{2}-2 \,{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x \right )+2 \,{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x}\right )}{8}+\frac {25 \left (\ln \left (\frac {3}{x^{2}}\right )+2 \ln \relax (x )\right ) \left ({\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x \right )^{3}-3 \,{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x \right )^{2}+6 \,{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x} \left (-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x \right )-6 \,{\mathrm e}^{-2 \ln \left (\frac {3}{x^{2}}\right )-4 \ln \relax (x )-2 x}\right )}{8}\) | \(761\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 74, normalized size = 3.36 \begin {gather*} -\frac {10}{3} \, {\left (x^{2} + 2 \, x + 2\right )} e^{\left (-x\right )} + \frac {20}{3} \, {\left (x + 1\right )} e^{\left (-x\right )} + \frac {25}{72} \, {\left (2 \, x^{4} + 4 \, x^{3} + 6 \, x^{2} + 6 \, x + 3\right )} e^{\left (-2 \, x\right )} - \frac {25}{72} \, {\left (4 \, x^{3} + 6 \, x^{2} + 6 \, x + 3\right )} e^{\left (-2 \, x\right )} - \frac {1}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.20, size = 21, normalized size = 0.95 \begin {gather*} -\frac {x\,\left (120\,x\,{\mathrm {e}}^{-x}-25\,x^3\,{\mathrm {e}}^{-2\,x}+9\right )}{36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 1.09 \begin {gather*} \frac {25 x^{4} e^{- 2 x}}{36} - \frac {10 x^{2} e^{- x}}{3} - \frac {x}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________