Optimal. Leaf size=22 \[ 3+e^x-\frac {16}{5} e^{15 (-4+x (2+x))^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 30, normalized size of antiderivative = 1.36, number of steps used = 3, number of rules used = 2, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {2194, 6706} \begin {gather*} e^x-\frac {16}{5} e^{15 x^4+60 x^3-60 x^2-240 x+240} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^x \, dx+\int e^{240-240 x-60 x^2+60 x^3+15 x^4} \left (768+384 x-576 x^2-192 x^3\right ) \, dx\\ &=e^x-\frac {16}{5} e^{240-240 x-60 x^2+60 x^3+15 x^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 30, normalized size = 1.36 \begin {gather*} e^x-\frac {16}{5} e^{240-240 x-60 x^2+60 x^3+15 x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 26, normalized size = 1.18 \begin {gather*} -\frac {16}{5} \, e^{\left (15 \, x^{4} + 60 \, x^{3} - 60 \, x^{2} - 240 \, x + 240\right )} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 26, normalized size = 1.18 \begin {gather*} -\frac {16}{5} \, e^{\left (15 \, x^{4} + 60 \, x^{3} - 60 \, x^{2} - 240 \, x + 240\right )} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 0.86
method | result | size |
risch | \(-\frac {16 \,{\mathrm e}^{15 \left (x^{2}+2 x -4\right )^{2}}}{5}+{\mathrm e}^{x}\) | \(19\) |
default | \(-\frac {16 \,{\mathrm e}^{15 x^{4}+60 x^{3}-60 x^{2}-240 x +240}}{5}+{\mathrm e}^{x}\) | \(27\) |
norman | \(-\frac {16 \,{\mathrm e}^{15 x^{4}+60 x^{3}-60 x^{2}-240 x +240}}{5}+{\mathrm e}^{x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 26, normalized size = 1.18 \begin {gather*} -\frac {16}{5} \, e^{\left (15 \, x^{4} + 60 \, x^{3} - 60 \, x^{2} - 240 \, x + 240\right )} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.28, size = 29, normalized size = 1.32 \begin {gather*} {\mathrm {e}}^x-\frac {16\,{\mathrm {e}}^{-240\,x}\,{\mathrm {e}}^{240}\,{\mathrm {e}}^{15\,x^4}\,{\mathrm {e}}^{-60\,x^2}\,{\mathrm {e}}^{60\,x^3}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 27, normalized size = 1.23 \begin {gather*} e^{x} - \frac {16 e^{15 x^{4} + 60 x^{3} - 60 x^{2} - 240 x + 240}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________