Optimal. Leaf size=20 \[ -\frac {x}{2}+\frac {1}{\frac {1}{2}+\frac {e^x x}{5}} \]
________________________________________________________________________________________
Rubi [F] time = 0.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25+e^x (-40-60 x)-4 e^{2 x} x^2}{50+40 e^x x+8 e^{2 x} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-25+e^x (-40-60 x)-4 e^{2 x} x^2}{2 \left (5+2 e^x x\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {-25+e^x (-40-60 x)-4 e^{2 x} x^2}{\left (5+2 e^x x\right )^2} \, dx\\ &=\frac {1}{2} \int \left (-1+\frac {100 (1+x)}{x \left (5+2 e^x x\right )^2}-\frac {20 (1+x)}{x \left (5+2 e^x x\right )}\right ) \, dx\\ &=-\frac {x}{2}-10 \int \frac {1+x}{x \left (5+2 e^x x\right )} \, dx+50 \int \frac {1+x}{x \left (5+2 e^x x\right )^2} \, dx\\ &=-\frac {x}{2}-10 \int \left (\frac {1}{5+2 e^x x}+\frac {1}{x \left (5+2 e^x x\right )}\right ) \, dx+50 \int \left (\frac {1}{\left (5+2 e^x x\right )^2}+\frac {1}{x \left (5+2 e^x x\right )^2}\right ) \, dx\\ &=-\frac {x}{2}-10 \int \frac {1}{5+2 e^x x} \, dx-10 \int \frac {1}{x \left (5+2 e^x x\right )} \, dx+50 \int \frac {1}{\left (5+2 e^x x\right )^2} \, dx+50 \int \frac {1}{x \left (5+2 e^x x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 20, normalized size = 1.00 \begin {gather*} \frac {1}{2} \left (-x+\frac {20}{5+2 e^x x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 23, normalized size = 1.15 \begin {gather*} -\frac {2 \, x^{2} e^{x} + 5 \, x - 20}{2 \, {\left (2 \, x e^{x} + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 23, normalized size = 1.15 \begin {gather*} -\frac {2 \, x^{2} e^{x} + 5 \, x - 20}{2 \, {\left (2 \, x e^{x} + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.80
method | result | size |
risch | \(-\frac {x}{2}+\frac {10}{2 \,{\mathrm e}^{x} x +5}\) | \(16\) |
norman | \(\frac {-\frac {5 x}{2}-{\mathrm e}^{x} x^{2}+10}{2 \,{\mathrm e}^{x} x +5}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 23, normalized size = 1.15 \begin {gather*} -\frac {2 \, x^{2} e^{x} + 5 \, x - 20}{2 \, {\left (2 \, x e^{x} + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 15, normalized size = 0.75 \begin {gather*} \frac {10}{2\,x\,{\mathrm {e}}^x+5}-\frac {x}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 12, normalized size = 0.60 \begin {gather*} - \frac {x}{2} + \frac {10}{2 x e^{x} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________