Optimal. Leaf size=35 \[ \frac {1}{4} x \left (\frac {5}{x}-x+e^{-x} x\right ) \left (-25+x+\frac {e^{-x} \log (x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.98, antiderivative size = 82, normalized size of antiderivative = 2.34, number of steps used = 35, number of rules used = 8, integrand size = 93, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {12, 6742, 2194, 2554, 2178, 2176, 2199, 2177} \begin {gather*} \frac {1}{4} e^{-x} x^3-\frac {x^3}{4}-\frac {25}{4} e^{-x} x^2+\frac {25 x^2}{4}+\frac {5 x}{4}+\frac {1}{4} e^{-2 x} x \log (x)-\frac {1}{4} e^{-x} x \log (x)+\frac {5 e^{-x} \log (x)}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{-2 x} \left (x^2+e^{2 x} \left (5 x^2+50 x^3-3 x^4\right )+e^x \left (5-x^2-50 x^3+28 x^4-x^5\right )+\left (x^2-2 x^3+e^x \left (-5-5 x-x^2+x^3\right )\right ) \log (x)\right )}{x^2} \, dx\\ &=\frac {1}{4} \int \left (5+e^{-2 x}+50 x-3 x^2+e^{-2 x} \log (x)-2 e^{-2 x} x \log (x)-\frac {e^{-x} \left (-5+x^2+50 x^3-28 x^4+x^5+5 \log (x)+5 x \log (x)+x^2 \log (x)-x^3 \log (x)\right )}{x^2}\right ) \, dx\\ &=\frac {5 x}{4}+\frac {25 x^2}{4}-\frac {x^3}{4}+\frac {1}{4} \int e^{-2 x} \, dx+\frac {1}{4} \int e^{-2 x} \log (x) \, dx-\frac {1}{4} \int \frac {e^{-x} \left (-5+x^2+50 x^3-28 x^4+x^5+5 \log (x)+5 x \log (x)+x^2 \log (x)-x^3 \log (x)\right )}{x^2} \, dx-\frac {1}{2} \int e^{-2 x} x \log (x) \, dx\\ &=-\frac {1}{8} e^{-2 x}+\frac {5 x}{4}+\frac {25 x^2}{4}-\frac {x^3}{4}+\frac {1}{4} e^{-2 x} x \log (x)-\frac {1}{4} \int -\frac {e^{-2 x}}{2 x} \, dx-\frac {1}{4} \int \left (\frac {e^{-x} \left (-5+x^2+50 x^3-28 x^4+x^5\right )}{x^2}-\frac {e^{-x} \left (-5-5 x-x^2+x^3\right ) \log (x)}{x^2}\right ) \, dx+\frac {1}{2} \int \frac {e^{-2 x} (-1-2 x)}{4 x} \, dx\\ &=-\frac {1}{8} e^{-2 x}+\frac {5 x}{4}+\frac {25 x^2}{4}-\frac {x^3}{4}+\frac {1}{4} e^{-2 x} x \log (x)+\frac {1}{8} \int \frac {e^{-2 x}}{x} \, dx+\frac {1}{8} \int \frac {e^{-2 x} (-1-2 x)}{x} \, dx-\frac {1}{4} \int \frac {e^{-x} \left (-5+x^2+50 x^3-28 x^4+x^5\right )}{x^2} \, dx+\frac {1}{4} \int \frac {e^{-x} \left (-5-5 x-x^2+x^3\right ) \log (x)}{x^2} \, dx\\ &=-\frac {1}{8} e^{-2 x}+\frac {5 x}{4}+\frac {25 x^2}{4}-\frac {x^3}{4}+\frac {\text {Ei}(-2 x)}{8}+\frac {5 e^{-x} \log (x)}{4 x}+\frac {1}{4} e^{-2 x} x \log (x)-\frac {1}{4} e^{-x} x \log (x)+\frac {1}{8} \int \left (-2 e^{-2 x}-\frac {e^{-2 x}}{x}\right ) \, dx-\frac {1}{4} \int \frac {e^{-x} \left (5-x^2\right )}{x^2} \, dx-\frac {1}{4} \int \left (e^{-x}-\frac {5 e^{-x}}{x^2}+50 e^{-x} x-28 e^{-x} x^2+e^{-x} x^3\right ) \, dx\\ &=-\frac {1}{8} e^{-2 x}+\frac {5 x}{4}+\frac {25 x^2}{4}-\frac {x^3}{4}+\frac {\text {Ei}(-2 x)}{8}+\frac {5 e^{-x} \log (x)}{4 x}+\frac {1}{4} e^{-2 x} x \log (x)-\frac {1}{4} e^{-x} x \log (x)-\frac {1}{8} \int \frac {e^{-2 x}}{x} \, dx-\frac {1}{4} \int e^{-2 x} \, dx-\frac {1}{4} \int e^{-x} \, dx-\frac {1}{4} \int \left (-e^{-x}+\frac {5 e^{-x}}{x^2}\right ) \, dx-\frac {1}{4} \int e^{-x} x^3 \, dx+\frac {5}{4} \int \frac {e^{-x}}{x^2} \, dx+7 \int e^{-x} x^2 \, dx-\frac {25}{2} \int e^{-x} x \, dx\\ &=\frac {e^{-x}}{4}-\frac {5 e^{-x}}{4 x}+\frac {5 x}{4}+\frac {25 e^{-x} x}{2}+\frac {25 x^2}{4}-7 e^{-x} x^2-\frac {x^3}{4}+\frac {1}{4} e^{-x} x^3+\frac {5 e^{-x} \log (x)}{4 x}+\frac {1}{4} e^{-2 x} x \log (x)-\frac {1}{4} e^{-x} x \log (x)+\frac {1}{4} \int e^{-x} \, dx-\frac {3}{4} \int e^{-x} x^2 \, dx-\frac {5}{4} \int \frac {e^{-x}}{x^2} \, dx-\frac {5}{4} \int \frac {e^{-x}}{x} \, dx-\frac {25}{2} \int e^{-x} \, dx+14 \int e^{-x} x \, dx\\ &=\frac {25 e^{-x}}{2}+\frac {5 x}{4}-\frac {3 e^{-x} x}{2}+\frac {25 x^2}{4}-\frac {25}{4} e^{-x} x^2-\frac {x^3}{4}+\frac {1}{4} e^{-x} x^3-\frac {5 \text {Ei}(-x)}{4}+\frac {5 e^{-x} \log (x)}{4 x}+\frac {1}{4} e^{-2 x} x \log (x)-\frac {1}{4} e^{-x} x \log (x)+\frac {5}{4} \int \frac {e^{-x}}{x} \, dx-\frac {3}{2} \int e^{-x} x \, dx+14 \int e^{-x} \, dx\\ &=-\frac {3 e^{-x}}{2}+\frac {5 x}{4}+\frac {25 x^2}{4}-\frac {25}{4} e^{-x} x^2-\frac {x^3}{4}+\frac {1}{4} e^{-x} x^3+\frac {5 e^{-x} \log (x)}{4 x}+\frac {1}{4} e^{-2 x} x \log (x)-\frac {1}{4} e^{-x} x \log (x)-\frac {3}{2} \int e^{-x} \, dx\\ &=\frac {5 x}{4}+\frac {25 x^2}{4}-\frac {25}{4} e^{-x} x^2-\frac {x^3}{4}+\frac {1}{4} e^{-x} x^3+\frac {5 e^{-x} \log (x)}{4 x}+\frac {1}{4} e^{-2 x} x \log (x)-\frac {1}{4} e^{-x} x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 52, normalized size = 1.49 \begin {gather*} \frac {1}{4} \left (x \left (5+25 x+e^{-x} (-25+x) x-x^2\right )+\frac {e^{-2 x} \left (x^2-e^x \left (-5+x^2\right )\right ) \log (x)}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 59, normalized size = 1.69 \begin {gather*} -\frac {{\left ({\left (x^{4} - 25 \, x^{3} - 5 \, x^{2}\right )} e^{\left (2 \, x\right )} - {\left (x^{4} - 25 \, x^{3}\right )} e^{x} - {\left (x^{2} - {\left (x^{2} - 5\right )} e^{x}\right )} \log \relax (x)\right )} e^{\left (-2 \, x\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 67, normalized size = 1.91 \begin {gather*} \frac {x^{4} e^{\left (-x\right )} - x^{4} - 25 \, x^{3} e^{\left (-x\right )} - x^{2} e^{\left (-x\right )} \log \relax (x) + x^{2} e^{\left (-2 \, x\right )} \log \relax (x) + 25 \, x^{3} + 5 \, x^{2} + 5 \, e^{\left (-x\right )} \log \relax (x)}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 60, normalized size = 1.71
method | result | size |
risch | \(-\frac {\left ({\mathrm e}^{x} x^{2}-x^{2}-5 \,{\mathrm e}^{x}\right ) {\mathrm e}^{-2 x} \ln \relax (x )}{4 x}-\frac {x \left ({\mathrm e}^{x} x^{2}-x^{2}-25 \,{\mathrm e}^{x} x +25 x -5 \,{\mathrm e}^{x}\right ) {\mathrm e}^{-x}}{4}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{4} \, x^{3} + \frac {25}{4} \, x^{2} + \frac {1}{4} \, {\left (x^{3} + 3 \, x^{2} + 6 \, x + 6\right )} e^{\left (-x\right )} - 7 \, {\left (x^{2} + 2 \, x + 2\right )} e^{\left (-x\right )} + \frac {25}{2} \, {\left (x + 1\right )} e^{\left (-x\right )} - \frac {1}{8} \, e^{\left (-2 \, x\right )} \log \relax (x) + \frac {5}{4} \, x - \frac {2 \, {\left (x^{2} - 5\right )} e^{\left (-x\right )} \log \relax (x) - {\left (2 \, x^{2} + x\right )} e^{\left (-2 \, x\right )} \log \relax (x)}{8 \, x} + \frac {1}{8} \, {\rm Ei}\left (-2 \, x\right ) + \frac {1}{4} \, e^{\left (-x\right )} - \frac {1}{8} \, e^{\left (-2 \, x\right )} - \frac {5}{4} \, \Gamma \left (-1, x\right ) - \frac {1}{8} \, \int \frac {{\left (2 \, x + 1\right )} e^{\left (-2 \, x\right )}}{x}\,{d x} + \frac {1}{4} \, \int \frac {{\left (x^{2} - 5\right )} e^{\left (-x\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.79, size = 140, normalized size = 4.00 \begin {gather*} \frac {x\,\left (-x^2+25\,x+5\right )}{4}-\frac {5\,{\mathrm {e}}^{-x}-x\,{\mathrm {e}}^{-x}+25\,x^3\,{\mathrm {e}}^{-x}-x^4\,{\mathrm {e}}^{-x}}{4\,x}-\frac {{\mathrm {e}}^{-2\,x}}{8}+\frac {5\,x\,{\mathrm {e}}^{-x}-x^2\,{\mathrm {e}}^{-x}-x^3\,{\mathrm {e}}^{-x}\,\ln \relax (x)+5\,x\,{\mathrm {e}}^{-x}\,\ln \relax (x)}{4\,x^2}-\frac {{\mathrm {e}}^{-2\,x}\,\ln \relax (x)}{8}+\frac {\frac {x\,{\mathrm {e}}^{-2\,x}}{4}+\frac {x^2\,{\mathrm {e}}^{-2\,x}\,\ln \relax (x)}{2}+\frac {x\,{\mathrm {e}}^{-2\,x}\,\ln \relax (x)}{4}}{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.38, size = 60, normalized size = 1.71 \begin {gather*} - \frac {x^{3}}{4} + \frac {25 x^{2}}{4} + \frac {5 x}{4} + \frac {4 x^{2} e^{- 2 x} \log {\relax (x )} + \left (4 x^{4} - 100 x^{3} - 4 x^{2} \log {\relax (x )} + 20 \log {\relax (x )}\right ) e^{- x}}{16 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________