Optimal. Leaf size=22 \[ e^{-e^x} \left (-6+e^x+x^3 (25+5 x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-e^x} \left (-e^{2 x}+75 x^2+20 x^3+e^x \left (7-25 x^3-5 x^4\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{-e^x+2 x}+75 e^{-e^x} x^2+20 e^{-e^x} x^3-e^{-e^x+x} \left (-7+25 x^3+5 x^4\right )\right ) \, dx\\ &=20 \int e^{-e^x} x^3 \, dx+75 \int e^{-e^x} x^2 \, dx-\int e^{-e^x+2 x} \, dx-\int e^{-e^x+x} \left (-7+25 x^3+5 x^4\right ) \, dx\\ &=20 \int e^{-e^x} x^3 \, dx+75 \int e^{-e^x} x^2 \, dx-\int \left (-7 e^{-e^x+x}+25 e^{-e^x+x} x^3+5 e^{-e^x+x} x^4\right ) \, dx-\operatorname {Subst}\left (\int e^{-x} x \, dx,x,e^x\right )\\ &=e^{-e^x+x}-5 \int e^{-e^x+x} x^4 \, dx+7 \int e^{-e^x+x} \, dx+20 \int e^{-e^x} x^3 \, dx-25 \int e^{-e^x+x} x^3 \, dx+75 \int e^{-e^x} x^2 \, dx-\operatorname {Subst}\left (\int e^{-x} \, dx,x,e^x\right )\\ &=e^{-e^x}+e^{-e^x+x}-5 \int e^{-e^x+x} x^4 \, dx+7 \operatorname {Subst}\left (\int e^{-x} \, dx,x,e^x\right )+20 \int e^{-e^x} x^3 \, dx-25 \int e^{-e^x+x} x^3 \, dx+75 \int e^{-e^x} x^2 \, dx\\ &=-6 e^{-e^x}+e^{-e^x+x}-5 \int e^{-e^x+x} x^4 \, dx+20 \int e^{-e^x} x^3 \, dx-25 \int e^{-e^x+x} x^3 \, dx+75 \int e^{-e^x} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 23, normalized size = 1.05 \begin {gather*} e^{-e^x} \left (-6+e^x+25 x^3+5 x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 20, normalized size = 0.91 \begin {gather*} {\left (5 \, x^{4} + 25 \, x^{3} + e^{x} - 6\right )} e^{\left (-e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.12, size = 54, normalized size = 2.45 \begin {gather*} {\left (5 \, x^{4} e^{\left (2 \, x - e^{x}\right )} + 25 \, x^{3} e^{\left (2 \, x - e^{x}\right )} + e^{\left (3 \, x - e^{x}\right )} - 6 \, e^{\left (2 \, x - e^{x}\right )}\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.95
method | result | size |
norman | \(\left (-6+25 x^{3}+5 x^{4}+{\mathrm e}^{x}\right ) {\mathrm e}^{-{\mathrm e}^{x}}\) | \(21\) |
risch | \(\left (-6+25 x^{3}+5 x^{4}+{\mathrm e}^{x}\right ) {\mathrm e}^{-{\mathrm e}^{x}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 28, normalized size = 1.27 \begin {gather*} {\left (5 \, x^{4} + 25 \, x^{3} + e^{x} + 1\right )} e^{\left (-e^{x}\right )} - 7 \, e^{\left (-e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 20, normalized size = 0.91 \begin {gather*} {\mathrm {e}}^{-{\mathrm {e}}^x}\,\left ({\mathrm {e}}^x+25\,x^3+5\,x^4-6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 0.86 \begin {gather*} \left (5 x^{4} + 25 x^{3} + e^{x} - 6\right ) e^{- e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________