Optimal. Leaf size=33 \[ \frac {5}{\log \left (\frac {e^{2 e^{2 e^3}} \left (e^3-e^{-2 x} x\right )}{\log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 e^{3+2 x}-5 x+\left (5 x-10 x^2\right ) \log (x)}{\left (e^{3+2 x} x-x^2\right ) \log (x) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (e^{3+2 x}-x+x \log (x)-2 x^2 \log (x)\right )}{\left (e^{3+2 x} x-x^2\right ) \log (x) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )} \, dx\\ &=5 \int \frac {e^{3+2 x}-x+x \log (x)-2 x^2 \log (x)}{\left (e^{3+2 x} x-x^2\right ) \log (x) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )} \, dx\\ &=5 \int \left (\frac {-1+2 x}{\left (-e^{3+2 x}+x\right ) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )}+\frac {1}{x \log (x) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )}\right ) \, dx\\ &=5 \int \frac {-1+2 x}{\left (-e^{3+2 x}+x\right ) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )} \, dx+5 \int \frac {1}{x \log (x) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )} \, dx\\ &=5 \int \left (\frac {1}{\left (e^{3+2 x}-x\right ) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )}-\frac {2 x}{\left (e^{3+2 x}-x\right ) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )}\right ) \, dx+5 \int \frac {1}{x \log (x) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )} \, dx\\ &=5 \int \frac {1}{\left (e^{3+2 x}-x\right ) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )} \, dx+5 \int \frac {1}{x \log (x) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )} \, dx-10 \int \frac {x}{\left (e^{3+2 x}-x\right ) \log ^2\left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 36, normalized size = 1.09 \begin {gather*} \frac {5}{\log \left (\frac {e^{2 e^{2 e^3}-2 x} \left (e^{3+2 x}-x\right )}{\log (x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 38, normalized size = 1.15 \begin {gather*} \frac {5}{\log \left (-\frac {x e^{\left (-2 \, x + 2 \, e^{\left (2 \, e^{3}\right )}\right )} - e^{\left (2 \, e^{\left (2 \, e^{3}\right )} + 3\right )}}{\log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 43, normalized size = 1.30 \begin {gather*} \frac {5}{\log \left (-{\left (x e^{\left (2 \, e^{\left (2 \, e^{3}\right )}\right )} - e^{\left (2 \, x + 2 \, e^{\left (2 \, e^{3}\right )} + 3\right )}\right )} e^{\left (-2 \, x\right )}\right ) - \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.24, size = 331, normalized size = 10.03
method | result | size |
risch | \(\frac {10 i}{\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-2 x}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{2 x +3}+x \right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-2 x} \left (-{\mathrm e}^{2 x +3}+x \right )}{\ln \relax (x )}\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-2 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-2 x} \left (-{\mathrm e}^{2 x +3}+x \right )}{\ln \relax (x )}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (-{\mathrm e}^{2 x +3}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{2 x +3}+x \right )}{\ln \relax (x )}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (-{\mathrm e}^{2 x +3}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{2 x +3}+x \right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-\pi \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{2 x +3}+x \right )}{\ln \relax (x )}\right )^{3}-\pi \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{2 x +3}+x \right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )+\pi \,\mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{2 x +3}+x \right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-2 x} \left (-{\mathrm e}^{2 x +3}+x \right )}{\ln \relax (x )}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-2 x} \left (-{\mathrm e}^{2 x +3}+x \right )}{\ln \relax (x )}\right )^{3}+2 i \ln \left ({\mathrm e}^{2 x +3}-x \right )-2 i \ln \left (\ln \relax (x )\right )-2 i \ln \left ({\mathrm e}^{2 x}\right )+4 i {\mathrm e}^{2 \,{\mathrm e}^{3}}}\) | \(331\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 31, normalized size = 0.94 \begin {gather*} -\frac {5}{2 \, x - 2 \, e^{\left (2 \, e^{3}\right )} - \log \left (-x + e^{\left (2 \, x + 3\right )}\right ) + \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.09, size = 33, normalized size = 1.00 \begin {gather*} \frac {5}{\ln \left (-\frac {{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,{\mathrm {e}}^3}}\,\left (x-{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^3\right )}{\ln \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.75, size = 31, normalized size = 0.94 \begin {gather*} \frac {5}{\log {\left (\frac {\left (- x + e^{3} e^{2 x}\right ) e^{- 2 x} e^{2 e^{2 e^{3}}}}{\log {\relax (x )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________