Optimal. Leaf size=34 \[ -1-e^{\frac {5+x}{x^2}}+x-x^2-\frac {x}{5+x}+\log \left (\frac {\log (4)}{3}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.68, antiderivative size = 27, normalized size of antiderivative = 0.79, number of steps used = 11, number of rules used = 5, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {1594, 27, 6742, 43, 6706} \begin {gather*} -x^2-e^{\frac {5}{x^2}+\frac {1}{x}}+x+\frac {5}{x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 43
Rule 1594
Rule 6706
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20 x^3-40 x^4-19 x^5-2 x^6+e^{\frac {5+x}{x^2}} \left (250+125 x+20 x^2+x^3\right )}{x^3 \left (25+10 x+x^2\right )} \, dx\\ &=\int \frac {20 x^3-40 x^4-19 x^5-2 x^6+e^{\frac {5+x}{x^2}} \left (250+125 x+20 x^2+x^3\right )}{x^3 (5+x)^2} \, dx\\ &=\int \left (\frac {20}{(5+x)^2}-\frac {40 x}{(5+x)^2}-\frac {19 x^2}{(5+x)^2}-\frac {2 x^3}{(5+x)^2}+\frac {e^{\frac {5}{x^2}+\frac {1}{x}} (10+x)}{x^3}\right ) \, dx\\ &=-\frac {20}{5+x}-2 \int \frac {x^3}{(5+x)^2} \, dx-19 \int \frac {x^2}{(5+x)^2} \, dx-40 \int \frac {x}{(5+x)^2} \, dx+\int \frac {e^{\frac {5}{x^2}+\frac {1}{x}} (10+x)}{x^3} \, dx\\ &=-e^{\frac {5}{x^2}+\frac {1}{x}}-\frac {20}{5+x}-2 \int \left (-10+x-\frac {125}{(5+x)^2}+\frac {75}{5+x}\right ) \, dx-19 \int \left (1+\frac {25}{(5+x)^2}-\frac {10}{5+x}\right ) \, dx-40 \int \left (-\frac {5}{(5+x)^2}+\frac {1}{5+x}\right ) \, dx\\ &=-e^{\frac {5}{x^2}+\frac {1}{x}}+x-x^2+\frac {5}{5+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 33, normalized size = 0.97 \begin {gather*} -e^{\frac {5}{x^2}+\frac {1}{x}}+\frac {5}{5+x}+11 (5+x)-(5+x)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 32, normalized size = 0.94 \begin {gather*} -\frac {x^{3} + 4 \, x^{2} + {\left (x + 5\right )} e^{\left (\frac {x + 5}{x^{2}}\right )} - 5 \, x - 5}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 26, normalized size = 0.76 \begin {gather*} -x^{2} + x + \frac {5}{x + 5} - e^{\left (\frac {1}{x} + \frac {5}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 25, normalized size = 0.74
method | result | size |
risch | \(-x^{2}+x +\frac {5}{5+x}-{\mathrm e}^{\frac {5+x}{x^{2}}}\) | \(25\) |
derivativedivides | \(-{\mathrm e}^{\frac {1}{x}+\frac {5}{x^{2}}}+x -x^{2}-\frac {1}{1+\frac {5}{x}}\) | \(31\) |
default | \(-{\mathrm e}^{\frac {1}{x}+\frac {5}{x^{2}}}+x -x^{2}-\frac {1}{1+\frac {5}{x}}\) | \(31\) |
norman | \(\frac {-20 x^{2}-4 x^{4}-x^{5}-5 \,{\mathrm e}^{\frac {5+x}{x^{2}}} x^{2}-{\mathrm e}^{\frac {5+x}{x^{2}}} x^{3}}{x^{2} \left (5+x \right )}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 26, normalized size = 0.76 \begin {gather*} -x^{2} + x + \frac {5}{x + 5} - e^{\left (\frac {1}{x} + \frac {5}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.49, size = 26, normalized size = 0.76 \begin {gather*} x-{\mathrm {e}}^{\frac {1}{x}+\frac {5}{x^2}}+\frac {5}{x+5}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 17, normalized size = 0.50 \begin {gather*} - x^{2} + x - e^{\frac {x + 5}{x^{2}}} + \frac {5}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________