Optimal. Leaf size=27 \[ 16 \log \left (2 x-\log \left (\log \left (\frac {5}{4 \left (4+2 x+x^2+\log (2)\right )}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 132, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6688, 12, 6684} \begin {gather*} 16 \log \left (2 x-\log \left (\log \left (\frac {5}{4 \left (x^2+2 x+4+\log (2)\right )}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 \left (1+x+\left (4+2 x+x^2+\log (2)\right ) \log \left (\frac {5}{4 \left (4+2 x+x^2+\log (2)\right )}\right )\right )}{\left (4+2 x+x^2+\log (2)\right ) \log \left (\frac {5}{4 \left (4+2 x+x^2+\log (2)\right )}\right ) \left (2 x-\log \left (\log \left (\frac {5}{4 \left (4+2 x+x^2+\log (2)\right )}\right )\right )\right )} \, dx\\ &=32 \int \frac {1+x+\left (4+2 x+x^2+\log (2)\right ) \log \left (\frac {5}{4 \left (4+2 x+x^2+\log (2)\right )}\right )}{\left (4+2 x+x^2+\log (2)\right ) \log \left (\frac {5}{4 \left (4+2 x+x^2+\log (2)\right )}\right ) \left (2 x-\log \left (\log \left (\frac {5}{4 \left (4+2 x+x^2+\log (2)\right )}\right )\right )\right )} \, dx\\ &=16 \log \left (2 x-\log \left (\log \left (\frac {5}{4 \left (4+2 x+x^2+\log (2)\right )}\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 27, normalized size = 1.00 \begin {gather*} 16 \log \left (2 x-\log \left (\log \left (\frac {5}{4 \left (4+2 x+x^2+\log (2)\right )}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 23, normalized size = 0.85 \begin {gather*} 16 \, \log \left (-2 \, x + \log \left (\log \left (\frac {5}{4 \, {\left (x^{2} + 2 \, x + \log \relax (2) + 4\right )}}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.49, size = 30, normalized size = 1.11 \begin {gather*} 16 \, \log \left (2 \, x - \log \left (\log \relax (5) - 2 \, \log \relax (2) - \log \left (x^{2} + 2 \, x + \log \relax (2) + 4\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (-32 \ln \relax (2)-32 x^{2}-64 x -128\right ) \ln \left (\frac {5}{4 \ln \relax (2)+4 x^{2}+8 x +16}\right )-32 x -32}{\left (\ln \relax (2)+x^{2}+2 x +4\right ) \ln \left (\frac {5}{4 \ln \relax (2)+4 x^{2}+8 x +16}\right ) \ln \left (\ln \left (\frac {5}{4 \ln \relax (2)+4 x^{2}+8 x +16}\right )\right )+\left (-2 x \ln \relax (2)-2 x^{3}-4 x^{2}-8 x \right ) \ln \left (\frac {5}{4 \ln \relax (2)+4 x^{2}+8 x +16}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 28, normalized size = 1.04 \begin {gather*} 16 \, \log \left (-2 \, x + \log \left (\log \relax (5) - 2 \, \log \relax (2) - \log \left (x^{2} + 2 \, x + \log \relax (2) + 4\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.01, size = 26, normalized size = 0.96 \begin {gather*} 16 \log {\left (- 2 x + \log {\left (\log {\left (\frac {5}{4 x^{2} + 8 x + 4 \log {\relax (2 )} + 16} \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________