3.85.2 15(10x+ee15(10x2eexx2exx+2x2)(5+e15(10x2eexx2exx+2x2)(10x4x2+ex(2x+2x2)+eex(2x+2exx2))))dx

Optimal. Leaf size=30 x(ee25x(5eexex+x)+x)

________________________________________________________________________________________

Rubi [B]  time = 0.30, antiderivative size = 105, normalized size of antiderivative = 3.50, number of steps used = 3, number of rules used = 2, integrand size = 112, number of rulesintegrand size = 0.018, Rules used = {12, 2288} x2ee25(x2eexxexx+5x)(2x2ex(x2+x)eex(exx2+x)+5x)exxex+exx+2xeexex+5

Antiderivative was successfully verified.

[In]

Int[(10*x + E^E^((10*x - 2*E^E^x*x - 2*E^x*x + 2*x^2)/5)*(-5 + E^((10*x - 2*E^E^x*x - 2*E^x*x + 2*x^2)/5)*(-10
*x - 4*x^2 + E^x*(2*x + 2*x^2) + E^E^x*(2*x + 2*E^x*x^2))))/5,x]

[Out]

x^2 - (E^E^((2*(5*x - E^E^x*x - E^x*x + x^2))/5)*(5*x + 2*x^2 - E^x*(x + x^2) - E^E^x*(x + E^x*x^2)))/(5 - E^E
^x - E^x + 2*x - E^x*x - E^(E^x + x)*x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=15(10x+ee15(10x2eexx2exx+2x2)(5+e15(10x2eexx2exx+2x2)(10x4x2+ex(2x+2x2)+eex(2x+2exx2))))dx=x2+15ee15(10x2eexx2exx+2x2)(5+e15(10x2eexx2exx+2x2)(10x4x2+ex(2x+2x2)+eex(2x+2exx2)))dx=x2ee25(5xeexxexx+x2)(5x+2x2ex(x+x2)eex(x+exx2))5eexex+2xexxeex+xx

________________________________________________________________________________________

Mathematica [A]  time = 0.47, size = 30, normalized size = 1.00 x(ee25x(5eexex+x)+x)

Antiderivative was successfully verified.

[In]

Integrate[(10*x + E^E^((10*x - 2*E^E^x*x - 2*E^x*x + 2*x^2)/5)*(-5 + E^((10*x - 2*E^E^x*x - 2*E^x*x + 2*x^2)/5
)*(-10*x - 4*x^2 + E^x*(2*x + 2*x^2) + E^E^x*(2*x + 2*E^x*x^2))))/5,x]

[Out]

x*(-E^E^((2*x*(5 - E^E^x - E^x + x))/5) + x)

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 29, normalized size = 0.97 x2xe(e(25x225xex25xe(ex)+2x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(((2*exp(x)*x^2+2*x)*exp(exp(x))+(2*x^2+2*x)*exp(x)-4*x^2-10*x)*exp(-2/5*x*exp(exp(x))-2/5*exp(x
)*x+2/5*x^2+2*x)-5)*exp(exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/5*x^2+2*x))+2*x,x, algorithm="fricas")

[Out]

x^2 - x*e^(e^(2/5*x^2 - 2/5*x*e^x - 2/5*x*e^(e^x) + 2*x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 15(2(2x2(x2+x)ex(x2ex+x)e(ex)+5x)e(25x225xex25xe(ex)+2x)+5)e(e(25x225xex25xe(ex)+2x))+2xdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(((2*exp(x)*x^2+2*x)*exp(exp(x))+(2*x^2+2*x)*exp(x)-4*x^2-10*x)*exp(-2/5*x*exp(exp(x))-2/5*exp(x
)*x+2/5*x^2+2*x)-5)*exp(exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/5*x^2+2*x))+2*x,x, algorithm="giac")

[Out]

integrate(-1/5*(2*(2*x^2 - (x^2 + x)*e^x - (x^2*e^x + x)*e^(e^x) + 5*x)*e^(2/5*x^2 - 2/5*x*e^x - 2/5*x*e^(e^x)
 + 2*x) + 5)*e^(e^(2/5*x^2 - 2/5*x*e^x - 2/5*x*e^(e^x) + 2*x)) + 2*x, x)

________________________________________________________________________________________

maple [A]  time = 0.13, size = 23, normalized size = 0.77




method result size



risch xee2x(eex+exx5)5+x2 23



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/5*(((2*exp(x)*x^2+2*x)*exp(exp(x))+(2*x^2+2*x)*exp(x)-4*x^2-10*x)*exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/
5*x^2+2*x)-5)*exp(exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/5*x^2+2*x))+2*x,x,method=_RETURNVERBOSE)

[Out]

-x*exp(exp(-2/5*x*(exp(exp(x))+exp(x)-x-5)))+x^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 x215(2((x2+x)e(3x)(2x2+5x)e(2x)+(x2e(3x)+xe(2x))e(ex))e(25x2)5e(25xex+25xe(ex)))e(25xex25xe(ex)+e(25x225xex25xe(ex)+2x))dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(((2*exp(x)*x^2+2*x)*exp(exp(x))+(2*x^2+2*x)*exp(x)-4*x^2-10*x)*exp(-2/5*x*exp(exp(x))-2/5*exp(x
)*x+2/5*x^2+2*x)-5)*exp(exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/5*x^2+2*x))+2*x,x, algorithm="maxima")

[Out]

x^2 - 1/5*integrate(-(2*((x^2 + x)*e^(3*x) - (2*x^2 + 5*x)*e^(2*x) + (x^2*e^(3*x) + x*e^(2*x))*e^(e^x))*e^(2/5
*x^2) - 5*e^(2/5*x*e^x + 2/5*x*e^(e^x)))*e^(-2/5*x*e^x - 2/5*x*e^(e^x) + e^(2/5*x^2 - 2/5*x*e^x - 2/5*x*e^(e^x
) + 2*x)), x)

________________________________________________________________________________________

mupad [B]  time = 5.67, size = 31, normalized size = 1.03 x(xee2xex5e2xe2xeex5e2x25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(2*x - (exp(exp(2*x - (2*x*exp(exp(x)))/5 - (2*x*exp(x))/5 + (2*x^2)/5))*(exp(2*x - (2*x*exp(exp(x)))/5 - (
2*x*exp(x))/5 + (2*x^2)/5)*(10*x - exp(x)*(2*x + 2*x^2) + 4*x^2 - exp(exp(x))*(2*x + 2*x^2*exp(x))) + 5))/5,x)

[Out]

x*(x - exp(exp(-(2*x*exp(x))/5)*exp(2*x)*exp(-(2*x*exp(exp(x)))/5)*exp((2*x^2)/5)))

________________________________________________________________________________________

sympy [A]  time = 11.52, size = 36, normalized size = 1.20 x2xee2x252xex52xeex5+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(((2*exp(x)*x**2+2*x)*exp(exp(x))+(2*x**2+2*x)*exp(x)-4*x**2-10*x)*exp(-2/5*x*exp(exp(x))-2/5*ex
p(x)*x+2/5*x**2+2*x)-5)*exp(exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/5*x**2+2*x))+2*x,x)

[Out]

x**2 - x*exp(exp(2*x**2/5 - 2*x*exp(x)/5 - 2*x*exp(exp(x))/5 + 2*x))

________________________________________________________________________________________