3.85.2
Optimal. Leaf size=30
________________________________________________________________________________________
Rubi [B] time = 0.30, antiderivative size = 105, normalized size of antiderivative = 3.50,
number of steps used = 3, number of rules used = 2, integrand size = 112, = 0.018, Rules used
= {12, 2288}
Antiderivative was successfully verified.
[In]
Int[(10*x + E^E^((10*x - 2*E^E^x*x - 2*E^x*x + 2*x^2)/5)*(-5 + E^((10*x - 2*E^E^x*x - 2*E^x*x + 2*x^2)/5)*(-10
*x - 4*x^2 + E^x*(2*x + 2*x^2) + E^E^x*(2*x + 2*E^x*x^2))))/5,x]
[Out]
x^2 - (E^E^((2*(5*x - E^E^x*x - E^x*x + x^2))/5)*(5*x + 2*x^2 - E^x*(x + x^2) - E^E^x*(x + E^x*x^2)))/(5 - E^E
^x - E^x + 2*x - E^x*x - E^(E^x + x)*x)
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 30, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(10*x + E^E^((10*x - 2*E^E^x*x - 2*E^x*x + 2*x^2)/5)*(-5 + E^((10*x - 2*E^E^x*x - 2*E^x*x + 2*x^2)/5
)*(-10*x - 4*x^2 + E^x*(2*x + 2*x^2) + E^E^x*(2*x + 2*E^x*x^2))))/5,x]
[Out]
x*(-E^E^((2*x*(5 - E^E^x - E^x + x))/5) + x)
________________________________________________________________________________________
fricas [A] time = 0.67, size = 29, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(((2*exp(x)*x^2+2*x)*exp(exp(x))+(2*x^2+2*x)*exp(x)-4*x^2-10*x)*exp(-2/5*x*exp(exp(x))-2/5*exp(x
)*x+2/5*x^2+2*x)-5)*exp(exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/5*x^2+2*x))+2*x,x, algorithm="fricas")
[Out]
x^2 - x*e^(e^(2/5*x^2 - 2/5*x*e^x - 2/5*x*e^(e^x) + 2*x))
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(((2*exp(x)*x^2+2*x)*exp(exp(x))+(2*x^2+2*x)*exp(x)-4*x^2-10*x)*exp(-2/5*x*exp(exp(x))-2/5*exp(x
)*x+2/5*x^2+2*x)-5)*exp(exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/5*x^2+2*x))+2*x,x, algorithm="giac")
[Out]
integrate(-1/5*(2*(2*x^2 - (x^2 + x)*e^x - (x^2*e^x + x)*e^(e^x) + 5*x)*e^(2/5*x^2 - 2/5*x*e^x - 2/5*x*e^(e^x)
+ 2*x) + 5)*e^(e^(2/5*x^2 - 2/5*x*e^x - 2/5*x*e^(e^x) + 2*x)) + 2*x, x)
________________________________________________________________________________________
maple [A] time = 0.13, size = 23, normalized size = 0.77
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(1/5*(((2*exp(x)*x^2+2*x)*exp(exp(x))+(2*x^2+2*x)*exp(x)-4*x^2-10*x)*exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/
5*x^2+2*x)-5)*exp(exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/5*x^2+2*x))+2*x,x,method=_RETURNVERBOSE)
[Out]
-x*exp(exp(-2/5*x*(exp(exp(x))+exp(x)-x-5)))+x^2
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(((2*exp(x)*x^2+2*x)*exp(exp(x))+(2*x^2+2*x)*exp(x)-4*x^2-10*x)*exp(-2/5*x*exp(exp(x))-2/5*exp(x
)*x+2/5*x^2+2*x)-5)*exp(exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/5*x^2+2*x))+2*x,x, algorithm="maxima")
[Out]
x^2 - 1/5*integrate(-(2*((x^2 + x)*e^(3*x) - (2*x^2 + 5*x)*e^(2*x) + (x^2*e^(3*x) + x*e^(2*x))*e^(e^x))*e^(2/5
*x^2) - 5*e^(2/5*x*e^x + 2/5*x*e^(e^x)))*e^(-2/5*x*e^x - 2/5*x*e^(e^x) + e^(2/5*x^2 - 2/5*x*e^x - 2/5*x*e^(e^x
) + 2*x)), x)
________________________________________________________________________________________
mupad [B] time = 5.67, size = 31, normalized size = 1.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(2*x - (exp(exp(2*x - (2*x*exp(exp(x)))/5 - (2*x*exp(x))/5 + (2*x^2)/5))*(exp(2*x - (2*x*exp(exp(x)))/5 - (
2*x*exp(x))/5 + (2*x^2)/5)*(10*x - exp(x)*(2*x + 2*x^2) + 4*x^2 - exp(exp(x))*(2*x + 2*x^2*exp(x))) + 5))/5,x)
[Out]
x*(x - exp(exp(-(2*x*exp(x))/5)*exp(2*x)*exp(-(2*x*exp(exp(x)))/5)*exp((2*x^2)/5)))
________________________________________________________________________________________
sympy [A] time = 11.52, size = 36, normalized size = 1.20
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(((2*exp(x)*x**2+2*x)*exp(exp(x))+(2*x**2+2*x)*exp(x)-4*x**2-10*x)*exp(-2/5*x*exp(exp(x))-2/5*ex
p(x)*x+2/5*x**2+2*x)-5)*exp(exp(-2/5*x*exp(exp(x))-2/5*exp(x)*x+2/5*x**2+2*x))+2*x,x)
[Out]
x**2 - x*exp(exp(2*x**2/5 - 2*x*exp(x)/5 - 2*x*exp(exp(x))/5 + 2*x))
________________________________________________________________________________________