Optimal. Leaf size=30 \[ x \left (-e^{e^{\frac {2}{5} x \left (5-e^{e^x}-e^x+x\right )}}+x\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.30, antiderivative size = 105, normalized size of antiderivative = 3.50, number of steps used = 3, number of rules used = 2, integrand size = 112, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {12, 2288} \begin {gather*} x^2-\frac {e^{e^{\frac {2}{5} \left (x^2-e^{e^x} x-e^x x+5 x\right )}} \left (2 x^2-e^x \left (x^2+x\right )-e^{e^x} \left (e^x x^2+x\right )+5 x\right )}{-e^x x-e^{x+e^x} x+2 x-e^{e^x}-e^x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (10 x+e^{e^{\frac {1}{5} \left (10 x-2 e^{e^x} x-2 e^x x+2 x^2\right )}} \left (-5+e^{\frac {1}{5} \left (10 x-2 e^{e^x} x-2 e^x x+2 x^2\right )} \left (-10 x-4 x^2+e^x \left (2 x+2 x^2\right )+e^{e^x} \left (2 x+2 e^x x^2\right )\right )\right )\right ) \, dx\\ &=x^2+\frac {1}{5} \int e^{e^{\frac {1}{5} \left (10 x-2 e^{e^x} x-2 e^x x+2 x^2\right )}} \left (-5+e^{\frac {1}{5} \left (10 x-2 e^{e^x} x-2 e^x x+2 x^2\right )} \left (-10 x-4 x^2+e^x \left (2 x+2 x^2\right )+e^{e^x} \left (2 x+2 e^x x^2\right )\right )\right ) \, dx\\ &=x^2-\frac {e^{e^{\frac {2}{5} \left (5 x-e^{e^x} x-e^x x+x^2\right )}} \left (5 x+2 x^2-e^x \left (x+x^2\right )-e^{e^x} \left (x+e^x x^2\right )\right )}{5-e^{e^x}-e^x+2 x-e^x x-e^{e^x+x} x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 30, normalized size = 1.00 \begin {gather*} x \left (-e^{e^{\frac {2}{5} x \left (5-e^{e^x}-e^x+x\right )}}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 29, normalized size = 0.97 \begin {gather*} x^{2} - x e^{\left (e^{\left (\frac {2}{5} \, x^{2} - \frac {2}{5} \, x e^{x} - \frac {2}{5} \, x e^{\left (e^{x}\right )} + 2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{5} \, {\left (2 \, {\left (2 \, x^{2} - {\left (x^{2} + x\right )} e^{x} - {\left (x^{2} e^{x} + x\right )} e^{\left (e^{x}\right )} + 5 \, x\right )} e^{\left (\frac {2}{5} \, x^{2} - \frac {2}{5} \, x e^{x} - \frac {2}{5} \, x e^{\left (e^{x}\right )} + 2 \, x\right )} + 5\right )} e^{\left (e^{\left (\frac {2}{5} \, x^{2} - \frac {2}{5} \, x e^{x} - \frac {2}{5} \, x e^{\left (e^{x}\right )} + 2 \, x\right )}\right )} + 2 \, x\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 23, normalized size = 0.77
method | result | size |
risch | \(-x \,{\mathrm e}^{{\mathrm e}^{-\frac {2 x \left ({\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{x}-x -5\right )}{5}}}+x^{2}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{2} - \frac {1}{5} \, \int -{\left (2 \, {\left ({\left (x^{2} + x\right )} e^{\left (3 \, x\right )} - {\left (2 \, x^{2} + 5 \, x\right )} e^{\left (2 \, x\right )} + {\left (x^{2} e^{\left (3 \, x\right )} + x e^{\left (2 \, x\right )}\right )} e^{\left (e^{x}\right )}\right )} e^{\left (\frac {2}{5} \, x^{2}\right )} - 5 \, e^{\left (\frac {2}{5} \, x e^{x} + \frac {2}{5} \, x e^{\left (e^{x}\right )}\right )}\right )} e^{\left (-\frac {2}{5} \, x e^{x} - \frac {2}{5} \, x e^{\left (e^{x}\right )} + e^{\left (\frac {2}{5} \, x^{2} - \frac {2}{5} \, x e^{x} - \frac {2}{5} \, x e^{\left (e^{x}\right )} + 2 \, x\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.67, size = 31, normalized size = 1.03 \begin {gather*} x\,\left (x-{\mathrm {e}}^{{\mathrm {e}}^{-\frac {2\,x\,{\mathrm {e}}^x}{5}}\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-\frac {2\,x\,{\mathrm {e}}^{{\mathrm {e}}^x}}{5}}\,{\mathrm {e}}^{\frac {2\,x^2}{5}}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 11.52, size = 36, normalized size = 1.20 \begin {gather*} x^{2} - x e^{e^{\frac {2 x^{2}}{5} - \frac {2 x e^{x}}{5} - \frac {2 x e^{e^{x}}}{5} + 2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________