Optimal. Leaf size=24 \[ (-1+x-\log (-2-x+3 (-3+3 x+\log (-24+x))))^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 19, normalized size of antiderivative = 0.79, number of steps used = 3, number of rules used = 3, integrand size = 86, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {6688, 12, 6686} \begin {gather*} (-x+\log (8 x+3 \log (x-24)-11)+1)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (453-211 x+8 x^2+3 (-24+x) \log (-24+x)\right ) (-1+x-\log (-11+8 x+3 \log (-24+x)))}{(24-x) (11-8 x-3 \log (-24+x))} \, dx\\ &=2 \int \frac {\left (453-211 x+8 x^2+3 (-24+x) \log (-24+x)\right ) (-1+x-\log (-11+8 x+3 \log (-24+x)))}{(24-x) (11-8 x-3 \log (-24+x))} \, dx\\ &=(1-x+\log (-11+8 x+3 \log (-24+x)))^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 19, normalized size = 0.79 \begin {gather*} (-1+x-\log (-11+8 x+3 \log (-24+x)))^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 38, normalized size = 1.58 \begin {gather*} x^{2} - 2 \, {\left (x - 1\right )} \log \left (8 \, x + 3 \, \log \left (x - 24\right ) - 11\right ) + \log \left (8 \, x + 3 \, \log \left (x - 24\right ) - 11\right )^{2} - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.50, size = 50, normalized size = 2.08 \begin {gather*} x^{2} - 2 \, x \log \left (8 \, x + 3 \, \log \left (x - 24\right ) - 11\right ) + \log \left (8 \, x + 3 \, \log \left (x - 24\right ) - 11\right )^{2} - 2 \, x + 2 \, \log \left (8 \, x + 3 \, \log \left (x - 24\right ) - 11\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 49, normalized size = 2.04
method | result | size |
risch | \(\ln \left (3 \ln \left (x -24\right )+8 x -11\right )^{2}-2 \ln \left (3 \ln \left (x -24\right )+8 x -11\right ) x +x^{2}-2 x +2 \ln \left (\ln \left (x -24\right )+\frac {8 x}{3}-\frac {11}{3}\right )\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 38, normalized size = 1.58 \begin {gather*} x^{2} - 2 \, {\left (x - 1\right )} \log \left (8 \, x + 3 \, \log \left (x - 24\right ) - 11\right ) + \log \left (8 \, x + 3 \, \log \left (x - 24\right ) - 11\right )^{2} - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.44, size = 48, normalized size = 2.00 \begin {gather*} 2\,\ln \left (\frac {8\,x}{3}+\ln \left (x-24\right )-\frac {11}{3}\right )-2\,x-2\,x\,\ln \left (8\,x+3\,\ln \left (x-24\right )-11\right )+{\ln \left (8\,x+3\,\ln \left (x-24\right )-11\right )}^2+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.55, size = 54, normalized size = 2.25 \begin {gather*} x^{2} - 2 x \log {\left (8 x + 3 \log {\left (x - 24 \right )} - 11 \right )} - 2 x + 2 \log {\left (\frac {8 x}{3} + \log {\left (x - 24 \right )} - \frac {11}{3} \right )} + \log {\left (8 x + 3 \log {\left (x - 24 \right )} - 11 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________