Optimal. Leaf size=25 \[ \log \left (\frac {x^2}{3+2 x+e^{\frac {e^{9/4}}{x^3}} x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6 x^2+2 x^3+e^{\frac {e^{9/4}}{x^3}} \left (3 e^{9/4}+x^3\right )}{3 x^3+2 x^4+e^{\frac {e^{9/4}}{x^3}} x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3 e^{9/4}+x^3}{x^4}+\frac {3 \left (-3 e^{9/4}-2 e^{9/4} x+x^3\right )}{x^4 \left (3+2 x+e^{\frac {e^{9/4}}{x^3}} x\right )}\right ) \, dx\\ &=3 \int \frac {-3 e^{9/4}-2 e^{9/4} x+x^3}{x^4 \left (3+2 x+e^{\frac {e^{9/4}}{x^3}} x\right )} \, dx+\int \frac {3 e^{9/4}+x^3}{x^4} \, dx\\ &=3 \int \left (-\frac {3 e^{9/4}}{x^4 \left (3+2 x+e^{\frac {e^{9/4}}{x^3}} x\right )}-\frac {2 e^{9/4}}{x^3 \left (3+2 x+e^{\frac {e^{9/4}}{x^3}} x\right )}+\frac {1}{x \left (3+2 x+e^{\frac {e^{9/4}}{x^3}} x\right )}\right ) \, dx+\int \left (\frac {3 e^{9/4}}{x^4}+\frac {1}{x}\right ) \, dx\\ &=-\frac {e^{9/4}}{x^3}+\log (x)+3 \int \frac {1}{x \left (3+2 x+e^{\frac {e^{9/4}}{x^3}} x\right )} \, dx-\left (6 e^{9/4}\right ) \int \frac {1}{x^3 \left (3+2 x+e^{\frac {e^{9/4}}{x^3}} x\right )} \, dx-\left (9 e^{9/4}\right ) \int \frac {1}{x^4 \left (3+2 x+e^{\frac {e^{9/4}}{x^3}} x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 26, normalized size = 1.04 \begin {gather*} 2 \log (x)-\log \left (3+2 x+e^{\frac {e^{9/4}}{x^3}} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 24, normalized size = 0.96 \begin {gather*} \log \relax (x) - \log \left (\frac {x e^{\left (\frac {e^{\frac {9}{4}}}{x^{3}}\right )} + 2 \, x + 3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.96, size = 46, normalized size = 1.84 \begin {gather*} -\frac {x^{3} \log \left (x e^{\left (\frac {e^{\frac {9}{4}}}{x^{3}}\right )} + 2 \, x + 3\right ) - x^{3} \log \relax (x) - e^{\frac {9}{4}}}{x^{3}} - \frac {e^{\frac {9}{4}}}{x^{3}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 23, normalized size = 0.92
method | result | size |
norman | \(2 \ln \relax (x )-\ln \left (3+2 x +{\mathrm e}^{\frac {{\mathrm e}^{\frac {9}{4}}}{x^{3}}} x \right )\) | \(23\) |
risch | \(\ln \relax (x )-\ln \left ({\mathrm e}^{\frac {{\mathrm e}^{\frac {9}{4}}}{x^{3}}}+\frac {2 x +3}{x}\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 24, normalized size = 0.96 \begin {gather*} \log \relax (x) - \log \left (\frac {x e^{\left (\frac {e^{\frac {9}{4}}}{x^{3}}\right )} + 2 \, x + 3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.74, size = 24, normalized size = 0.96 \begin {gather*} \ln \relax (x)-\ln \left (\frac {2\,x+x\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{9/4}}{x^3}}+3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 20, normalized size = 0.80 \begin {gather*} \log {\relax (x )} - \log {\left (e^{\frac {e^{\frac {9}{4}}}{x^{3}}} + \frac {2 x + 3}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________