Optimal. Leaf size=28 \[ \frac {-e^x+x}{5 e^3 x \left (e^{1+x}+2 x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x^2+e^x \left (4 x-2 x^2\right )+e^{1+x} \left (e^x-x^2\right )}{5 e^{5+2 x} x^2+20 e^{4+x} x^3+20 e^3 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x^2+e^x \left (4 x-2 x^2\right )+e^{1+x} \left (e^x-x^2\right )}{5 e^3 x^2 \left (e^{1+x}+2 x\right )^2} \, dx\\ &=\frac {\int \frac {-2 x^2+e^x \left (4 x-2 x^2\right )+e^{1+x} \left (e^x-x^2\right )}{x^2 \left (e^{1+x}+2 x\right )^2} \, dx}{5 e^3}\\ &=\frac {\int \left (\frac {1}{e x^2}+\frac {2 (2+e) (-1+x)}{e \left (e^{1+x}+2 x\right )^2}-\frac {2+e}{e \left (e^{1+x}+2 x\right )}\right ) \, dx}{5 e^3}\\ &=-\frac {1}{5 e^4 x}-\frac {(2+e) \int \frac {1}{e^{1+x}+2 x} \, dx}{5 e^4}+\frac {(2 (2+e)) \int \frac {-1+x}{\left (e^{1+x}+2 x\right )^2} \, dx}{5 e^4}\\ &=-\frac {1}{5 e^4 x}-\frac {(2+e) \int \frac {1}{e^{1+x}+2 x} \, dx}{5 e^4}+\frac {(2 (2+e)) \int \left (-\frac {1}{\left (e^{1+x}+2 x\right )^2}+\frac {x}{\left (e^{1+x}+2 x\right )^2}\right ) \, dx}{5 e^4}\\ &=-\frac {1}{5 e^4 x}-\frac {(2+e) \int \frac {1}{e^{1+x}+2 x} \, dx}{5 e^4}-\frac {(2 (2+e)) \int \frac {1}{\left (e^{1+x}+2 x\right )^2} \, dx}{5 e^4}+\frac {(2 (2+e)) \int \frac {x}{\left (e^{1+x}+2 x\right )^2} \, dx}{5 e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 28, normalized size = 1.00 \begin {gather*} \frac {-e^x+x}{5 e^3 x \left (e^{1+x}+2 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 29, normalized size = 1.04 \begin {gather*} \frac {x e^{4} - e^{\left (x + 4\right )}}{5 \, {\left (2 \, x^{2} e^{7} + x e^{\left (x + 8\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 24, normalized size = 0.86 \begin {gather*} \frac {x - e^{x}}{5 \, {\left (2 \, x^{2} e^{3} + x e^{\left (x + 4\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 32, normalized size = 1.14
method | result | size |
norman | \(\frac {\frac {x \,{\mathrm e}^{-3}}{5}-\frac {{\mathrm e}^{-3} {\mathrm e}^{x}}{5}}{x \left ({\mathrm e} \,{\mathrm e}^{x}+2 x \right )}\) | \(32\) |
risch | \(-\frac {{\mathrm e}^{-4}}{5 x}+\frac {{\mathrm e}^{-4} {\mathrm e}}{10 x +5 \,{\mathrm e}^{x +1}}+\frac {2 \,{\mathrm e}^{-4}}{5 \left (2 x +{\mathrm e}^{x +1}\right )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 24, normalized size = 0.86 \begin {gather*} \frac {x - e^{x}}{5 \, {\left (2 \, x^{2} e^{3} + x e^{\left (x + 4\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.28, size = 23, normalized size = 0.82 \begin {gather*} \frac {x-{\mathrm {e}}^x}{5\,x\,\left ({\mathrm {e}}^{x+4}+2\,x\,{\mathrm {e}}^3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 27, normalized size = 0.96 \begin {gather*} \frac {2 + e}{10 x e^{4} + 5 e^{5} e^{x}} - \frac {1}{5 x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________