3.85.6 9x2+3x3+(3x2+3x3)log(1+x)+eexx(25x+(25+25x+ex(25x25x3))log(1+x))3x2+3x3dx

Optimal. Leaf size=22 (325eexx3x+x)log(1+x)

________________________________________________________________________________________

Rubi [B]  time = 1.34, antiderivative size = 74, normalized size of antiderivative = 3.36, number of steps used = 10, number of rules used = 6, integrand size = 76, number of rulesintegrand size = 0.079, Rules used = {1593, 6742, 43, 2389, 2295, 2288} 25eexx(exxlog(x1)exx3log(x1))3(1x)x2(exx+ex)+4log(1x)(1x)log(x1)

Antiderivative was successfully verified.

[In]

Int[(9*x^2 + 3*x^3 + (-3*x^2 + 3*x^3)*Log[-1 + x] + E^(E^x*x)*(-25*x + (-25 + 25*x + E^x*(25*x - 25*x^3))*Log[
-1 + x]))/(-3*x^2 + 3*x^3),x]

[Out]

4*Log[1 - x] - (1 - x)*Log[-1 + x] - (25*E^(E^x*x)*(E^x*x*Log[-1 + x] - E^x*x^3*Log[-1 + x]))/(3*(1 - x)*x^2*(
E^x + E^x*x))

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2389

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=9x2+3x3+(3x2+3x3)log(1+x)+eexx(25x+(25+25x+ex(25x25x3))log(1+x))x2(3+3x)dx=(3+xlog(1+x)+xlog(1+x)1+x25eexx(x+log(1+x)xlog(1+x)exxlog(1+x)+exx3log(1+x))3(1+x)x2)dx=(253eexx(x+log(1+x)xlog(1+x)exxlog(1+x)+exx3log(1+x))(1+x)x2dx)+3+xlog(1+x)+xlog(1+x)1+xdx=25eexx(exxlog(1+x)exx3log(1+x))3(1x)x2(ex+exx)+(3+x1+x+log(1+x))dx=25eexx(exxlog(1+x)exx3log(1+x))3(1x)x2(ex+exx)+3+x1+xdx+log(1+x)dx=25eexx(exxlog(1+x)exx3log(1+x))3(1x)x2(ex+exx)+(1+41+x)dx+Subst(log(x)dx,x,1+x)=4log(1x)+(1+x)log(1+x)25eexx(exxlog(1+x)exx3log(1+x))3(1x)x2(ex+exx)

________________________________________________________________________________________

Mathematica [A]  time = 0.58, size = 37, normalized size = 1.68 13(12log(1x)+(25eexx+3(1+x)x)log(1+x)x)

Antiderivative was successfully verified.

[In]

Integrate[(9*x^2 + 3*x^3 + (-3*x^2 + 3*x^3)*Log[-1 + x] + E^(E^x*x)*(-25*x + (-25 + 25*x + E^x*(25*x - 25*x^3)
)*Log[-1 + x]))/(-3*x^2 + 3*x^3),x]

[Out]

(12*Log[1 - x] + ((-25*E^(E^x*x) + 3*(-1 + x)*x)*Log[-1 + x])/x)/3

________________________________________________________________________________________

fricas [A]  time = 0.80, size = 30, normalized size = 1.36 3(x2+3x)log(x1)25e(xex)log(x1)3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-25*x^3+25*x)*exp(x)+25*x-25)*log(x-1)-25*x)*exp(exp(x)*x)+(3*x^3-3*x^2)*log(x-1)+3*x^3+9*x^2)/(
3*x^3-3*x^2),x, algorithm="fricas")

[Out]

1/3*(3*(x^2 + 3*x)*log(x - 1) - 25*e^(x*e^x)*log(x - 1))/x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 3x3+9x225(((x3x)exx+1)log(x1)+x)e(xex)+3(x3x2)log(x1)3(x3x2)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-25*x^3+25*x)*exp(x)+25*x-25)*log(x-1)-25*x)*exp(exp(x)*x)+(3*x^3-3*x^2)*log(x-1)+3*x^3+9*x^2)/(
3*x^3-3*x^2),x, algorithm="giac")

[Out]

integrate(1/3*(3*x^3 + 9*x^2 - 25*(((x^3 - x)*e^x - x + 1)*log(x - 1) + x)*e^(x*e^x) + 3*(x^3 - x^2)*log(x - 1
))/(x^3 - x^2), x)

________________________________________________________________________________________

maple [A]  time = 0.38, size = 28, normalized size = 1.27




method result size



risch ln(x1)x+3ln(x1)25ln(x1)eexx3x 28



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((((-25*x^3+25*x)*exp(x)+25*x-25)*ln(x-1)-25*x)*exp(exp(x)*x)+(3*x^3-3*x^2)*ln(x-1)+3*x^3+9*x^2)/(3*x^3-3*
x^2),x,method=_RETURNVERBOSE)

[Out]

ln(x-1)*x+3*ln(x-1)-25/3*ln(x-1)/x*exp(exp(x)*x)

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 40, normalized size = 1.82 (x+log(x1))log(x1)log(x1)225e(xex)log(x1)3x+3log(x1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-25*x^3+25*x)*exp(x)+25*x-25)*log(x-1)-25*x)*exp(exp(x)*x)+(3*x^3-3*x^2)*log(x-1)+3*x^3+9*x^2)/(
3*x^3-3*x^2),x, algorithm="maxima")

[Out]

(x + log(x - 1))*log(x - 1) - log(x - 1)^2 - 25/3*e^(x*e^x)*log(x - 1)/x + 3*log(x - 1)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.05 exex(25xln(x1)(25x+ex(25x25x3)25))+ln(x1)(3x23x3)9x23x33x23x3dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x*exp(x))*(25*x - log(x - 1)*(25*x + exp(x)*(25*x - 25*x^3) - 25)) + log(x - 1)*(3*x^2 - 3*x^3) - 9*x
^2 - 3*x^3)/(3*x^2 - 3*x^3),x)

[Out]

int((exp(x*exp(x))*(25*x - log(x - 1)*(25*x + exp(x)*(25*x - 25*x^3) - 25)) + log(x - 1)*(3*x^2 - 3*x^3) - 9*x
^2 - 3*x^3)/(3*x^2 - 3*x^3), x)

________________________________________________________________________________________

sympy [A]  time = 0.40, size = 29, normalized size = 1.32 xlog(x1)+3log(x1)25exexlog(x1)3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-25*x**3+25*x)*exp(x)+25*x-25)*ln(x-1)-25*x)*exp(exp(x)*x)+(3*x**3-3*x**2)*ln(x-1)+3*x**3+9*x**2
)/(3*x**3-3*x**2),x)

[Out]

x*log(x - 1) + 3*log(x - 1) - 25*exp(x*exp(x))*log(x - 1)/(3*x)

________________________________________________________________________________________