3.85.6
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [B] time = 1.34, antiderivative size = 74, normalized size of antiderivative = 3.36,
number of steps used = 10, number of rules used = 6, integrand size = 76, = 0.079, Rules used
= {1593, 6742, 43, 2389, 2295, 2288}
Antiderivative was successfully verified.
[In]
Int[(9*x^2 + 3*x^3 + (-3*x^2 + 3*x^3)*Log[-1 + x] + E^(E^x*x)*(-25*x + (-25 + 25*x + E^x*(25*x - 25*x^3))*Log[
-1 + x]))/(-3*x^2 + 3*x^3),x]
[Out]
4*Log[1 - x] - (1 - x)*Log[-1 + x] - (25*E^(E^x*x)*(E^x*x*Log[-1 + x] - E^x*x^3*Log[-1 + x]))/(3*(1 - x)*x^2*(
E^x + E^x*x))
Rule 43
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
Rule 1593
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2389
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.58, size = 37, normalized size = 1.68
Antiderivative was successfully verified.
[In]
Integrate[(9*x^2 + 3*x^3 + (-3*x^2 + 3*x^3)*Log[-1 + x] + E^(E^x*x)*(-25*x + (-25 + 25*x + E^x*(25*x - 25*x^3)
)*Log[-1 + x]))/(-3*x^2 + 3*x^3),x]
[Out]
(12*Log[1 - x] + ((-25*E^(E^x*x) + 3*(-1 + x)*x)*Log[-1 + x])/x)/3
________________________________________________________________________________________
fricas [A] time = 0.80, size = 30, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((-25*x^3+25*x)*exp(x)+25*x-25)*log(x-1)-25*x)*exp(exp(x)*x)+(3*x^3-3*x^2)*log(x-1)+3*x^3+9*x^2)/(
3*x^3-3*x^2),x, algorithm="fricas")
[Out]
1/3*(3*(x^2 + 3*x)*log(x - 1) - 25*e^(x*e^x)*log(x - 1))/x
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((-25*x^3+25*x)*exp(x)+25*x-25)*log(x-1)-25*x)*exp(exp(x)*x)+(3*x^3-3*x^2)*log(x-1)+3*x^3+9*x^2)/(
3*x^3-3*x^2),x, algorithm="giac")
[Out]
integrate(1/3*(3*x^3 + 9*x^2 - 25*(((x^3 - x)*e^x - x + 1)*log(x - 1) + x)*e^(x*e^x) + 3*(x^3 - x^2)*log(x - 1
))/(x^3 - x^2), x)
________________________________________________________________________________________
maple [A] time = 0.38, size = 28, normalized size = 1.27
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((((-25*x^3+25*x)*exp(x)+25*x-25)*ln(x-1)-25*x)*exp(exp(x)*x)+(3*x^3-3*x^2)*ln(x-1)+3*x^3+9*x^2)/(3*x^3-3*
x^2),x,method=_RETURNVERBOSE)
[Out]
ln(x-1)*x+3*ln(x-1)-25/3*ln(x-1)/x*exp(exp(x)*x)
________________________________________________________________________________________
maxima [A] time = 0.43, size = 40, normalized size = 1.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((-25*x^3+25*x)*exp(x)+25*x-25)*log(x-1)-25*x)*exp(exp(x)*x)+(3*x^3-3*x^2)*log(x-1)+3*x^3+9*x^2)/(
3*x^3-3*x^2),x, algorithm="maxima")
[Out]
(x + log(x - 1))*log(x - 1) - log(x - 1)^2 - 25/3*e^(x*e^x)*log(x - 1)/x + 3*log(x - 1)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(x*exp(x))*(25*x - log(x - 1)*(25*x + exp(x)*(25*x - 25*x^3) - 25)) + log(x - 1)*(3*x^2 - 3*x^3) - 9*x
^2 - 3*x^3)/(3*x^2 - 3*x^3),x)
[Out]
int((exp(x*exp(x))*(25*x - log(x - 1)*(25*x + exp(x)*(25*x - 25*x^3) - 25)) + log(x - 1)*(3*x^2 - 3*x^3) - 9*x
^2 - 3*x^3)/(3*x^2 - 3*x^3), x)
________________________________________________________________________________________
sympy [A] time = 0.40, size = 29, normalized size = 1.32
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((-25*x**3+25*x)*exp(x)+25*x-25)*ln(x-1)-25*x)*exp(exp(x)*x)+(3*x**3-3*x**2)*ln(x-1)+3*x**3+9*x**2
)/(3*x**3-3*x**2),x)
[Out]
x*log(x - 1) + 3*log(x - 1) - 25*exp(x*exp(x))*log(x - 1)/(3*x)
________________________________________________________________________________________