3.85.16 12e4+e2(15log(x)+3log2(x))e4(903e4+120x+(36+48x)log(x))e4x2dx

Optimal. Leaf size=21 (4+3x)(4+x6(5+log(x))e4)

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 41, normalized size of antiderivative = 1.95, number of steps used = 4, number of rules used = 3, integrand size = 50, number of rulesintegrand size = 0.060, Rules used = {12, 14, 2288} x30e41e6log2(x)e4(4xlog(x)+3log(x))log(x)+12x

Antiderivative was successfully verified.

[In]

Int[(-12*E^4 + E^((2*(15*Log[x] + 3*Log[x]^2))/E^4)*(90 - 3*E^4 + 120*x + (36 + 48*x)*Log[x]))/(E^4*x^2),x]

[Out]

12/x + (E^((6*Log[x]^2)/E^4)*x^(-1 + 30/E^4)*(3*Log[x] + 4*x*Log[x]))/Log[x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=12e4+e2(15log(x)+3log2(x))e4(903e4+120x+(36+48x)log(x))x2dxe4=(12e4x2+3e6log2(x)e4x2+30e4(30(1e430)+40x+12log(x)+16xlog(x)))dxe4=12x+3e6log2(x)e4x2+30e4(30(1e430)+40x+12log(x)+16xlog(x))dxe4=12x+e6log2(x)e4x1+30e4(3log(x)+4xlog(x))log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 32, normalized size = 1.52 12x+e6log2(x)e4x1+30e4(3+4x)

Antiderivative was successfully verified.

[In]

Integrate[(-12*E^4 + E^((2*(15*Log[x] + 3*Log[x]^2))/E^4)*(90 - 3*E^4 + 120*x + (36 + 48*x)*Log[x]))/(E^4*x^2)
,x]

[Out]

12/x + E^((6*Log[x]^2)/E^4)*x^(-1 + 30/E^4)*(3 + 4*x)

________________________________________________________________________________________

fricas [A]  time = 1.21, size = 26, normalized size = 1.24 (4x+3)e(6(log(x)2+5log(x))e(4))+12x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((48*x+36)*log(x)-3*exp(4)+120*x+90)*exp((3*log(x)^2+15*log(x))/exp(4))^2-12*exp(4))/x^2/exp(4),x,
algorithm="fricas")

[Out]

((4*x + 3)*e^(6*(log(x)^2 + 5*log(x))*e^(-4)) + 12)/x

________________________________________________________________________________________

giac [B]  time = 0.27, size = 48, normalized size = 2.29 (4xe(6(log(x)2+5log(x))e(4)+4)+12e4+3e(6(log(x)2+5log(x))e(4)+4))e(4)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((48*x+36)*log(x)-3*exp(4)+120*x+90)*exp((3*log(x)^2+15*log(x))/exp(4))^2-12*exp(4))/x^2/exp(4),x,
algorithm="giac")

[Out]

(4*x*e^(6*(log(x)^2 + 5*log(x))*e^(-4) + 4) + 12*e^4 + 3*e^(6*(log(x)^2 + 5*log(x))*e^(-4) + 4))*e^(-4)/x

________________________________________________________________________________________

maple [A]  time = 0.21, size = 28, normalized size = 1.33




method result size



risch 12x+(3+4x)x2(15+3ln(x))e4x 28
norman 12+3e2(3ln(x)2+15ln(x))e4+4xe2(3ln(x)2+15ln(x))e4x 50
default e4(3e4e2(3ln(x)2+15ln(x))e4+4xe4e2(3ln(x)2+15ln(x))e4x+12e4x) 66



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((48*x+36)*ln(x)-3*exp(4)+120*x+90)*exp((3*ln(x)^2+15*ln(x))/exp(4))^2-12*exp(4))/x^2/exp(4),x,method=_RE
TURNVERBOSE)

[Out]

12/x+(3+4*x)/x*(x^(3*(5+ln(x))*exp(-4)))^2

________________________________________________________________________________________

maxima [C]  time = 0.53, size = 361, normalized size = 17.19 112(3i6πerf(112i6(e430)e(2)+i6e(2)log(x))e(124(e430)2e(4)+6)+90i6πerf(112i6(e430)e(2)+i6e(2)log(x))e(124(e430)2e(4)+2)+120i6πerf(i6e(2)log(x)+52i6e(2))e(752e(4)+2)+36(616π((e430)e(4)12e(4)log(x))(erf(1216((e430)e(4)12e(4)log(x))2e4)1)(e430)e2((e430)e(4)12e(4)log(x))2e426e(124((e430)e(4)12e(4)log(x))2e4+2))e(124(e430)2e(4)+2)+86(15π(2e(4)log(x)+5e(4))(erf(32(2e(4)log(x)+5e(4))2e4)1)e2(2e(4)log(x)+5e(4))2e46e(32(2e(4)log(x)+5e(4))2e4+2))e(752e(4)+2)144e4x)e(4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((48*x+36)*log(x)-3*exp(4)+120*x+90)*exp((3*log(x)^2+15*log(x))/exp(4))^2-12*exp(4))/x^2/exp(4),x,
algorithm="maxima")

[Out]

-1/12*(-3*I*sqrt(6)*sqrt(pi)*erf(-1/12*I*sqrt(6)*(e^4 - 30)*e^(-2) + I*sqrt(6)*e^(-2)*log(x))*e^(-1/24*(e^4 -
30)^2*e^(-4) + 6) + 90*I*sqrt(6)*sqrt(pi)*erf(-1/12*I*sqrt(6)*(e^4 - 30)*e^(-2) + I*sqrt(6)*e^(-2)*log(x))*e^(
-1/24*(e^4 - 30)^2*e^(-4) + 2) + 120*I*sqrt(6)*sqrt(pi)*erf(I*sqrt(6)*e^(-2)*log(x) + 5/2*I*sqrt(6)*e^(-2))*e^
(-75/2*e^(-4) + 2) + 3*sqrt(6)*(sqrt(6)*sqrt(1/6)*sqrt(pi)*((e^4 - 30)*e^(-4) - 12*e^(-4)*log(x))*(erf(1/2*sqr
t(1/6)*sqrt(-((e^4 - 30)*e^(-4) - 12*e^(-4)*log(x))^2*e^4)) - 1)*(e^4 - 30)*e^2/sqrt(-((e^4 - 30)*e^(-4) - 12*
e^(-4)*log(x))^2*e^4) - 2*sqrt(6)*e^(1/24*((e^4 - 30)*e^(-4) - 12*e^(-4)*log(x))^2*e^4 + 2))*e^(-1/24*(e^4 - 3
0)^2*e^(-4) + 2) + 8*sqrt(6)*(15*sqrt(pi)*(2*e^(-4)*log(x) + 5*e^(-4))*(erf(sqrt(3/2)*sqrt(-(2*e^(-4)*log(x) +
 5*e^(-4))^2*e^4)) - 1)*e^2/sqrt(-(2*e^(-4)*log(x) + 5*e^(-4))^2*e^4) - sqrt(6)*e^(3/2*(2*e^(-4)*log(x) + 5*e^
(-4))^2*e^4 + 2))*e^(-75/2*e^(-4) + 2) - 144*e^4/x)*e^(-4)

________________________________________________________________________________________

mupad [B]  time = 5.28, size = 41, normalized size = 1.95 3x30e4e6e4ln(x)2+12x+4x30e4e6e4ln(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-4)*(12*exp(4) - exp(2*exp(-4)*(15*log(x) + 3*log(x)^2))*(120*x - 3*exp(4) + log(x)*(48*x + 36) + 90
)))/x^2,x)

[Out]

(3*x^(30*exp(-4))*exp(6*exp(-4)*log(x)^2) + 12)/x + 4*x^(30*exp(-4))*exp(6*exp(-4)*log(x)^2)

________________________________________________________________________________________

sympy [A]  time = 0.30, size = 26, normalized size = 1.24 (4x+3)e2(3log(x)2+15log(x))e4x+12x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((48*x+36)*ln(x)-3*exp(4)+120*x+90)*exp((3*ln(x)**2+15*ln(x))/exp(4))**2-12*exp(4))/x**2/exp(4),x)

[Out]

(4*x + 3)*exp(2*(3*log(x)**2 + 15*log(x))*exp(-4))/x + 12/x

________________________________________________________________________________________