3.85.16
Optimal. Leaf size=21
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 41, normalized size of antiderivative = 1.95,
number of steps used = 4, number of rules used = 3, integrand size = 50, = 0.060, Rules used =
{12, 14, 2288}
Antiderivative was successfully verified.
[In]
Int[(-12*E^4 + E^((2*(15*Log[x] + 3*Log[x]^2))/E^4)*(90 - 3*E^4 + 120*x + (36 + 48*x)*Log[x]))/(E^4*x^2),x]
[Out]
12/x + (E^((6*Log[x]^2)/E^4)*x^(-1 + 30/E^4)*(3*Log[x] + 4*x*Log[x]))/Log[x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 32, normalized size = 1.52
Antiderivative was successfully verified.
[In]
Integrate[(-12*E^4 + E^((2*(15*Log[x] + 3*Log[x]^2))/E^4)*(90 - 3*E^4 + 120*x + (36 + 48*x)*Log[x]))/(E^4*x^2)
,x]
[Out]
12/x + E^((6*Log[x]^2)/E^4)*x^(-1 + 30/E^4)*(3 + 4*x)
________________________________________________________________________________________
fricas [A] time = 1.21, size = 26, normalized size = 1.24
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((48*x+36)*log(x)-3*exp(4)+120*x+90)*exp((3*log(x)^2+15*log(x))/exp(4))^2-12*exp(4))/x^2/exp(4),x,
algorithm="fricas")
[Out]
((4*x + 3)*e^(6*(log(x)^2 + 5*log(x))*e^(-4)) + 12)/x
________________________________________________________________________________________
giac [B] time = 0.27, size = 48, normalized size = 2.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((48*x+36)*log(x)-3*exp(4)+120*x+90)*exp((3*log(x)^2+15*log(x))/exp(4))^2-12*exp(4))/x^2/exp(4),x,
algorithm="giac")
[Out]
(4*x*e^(6*(log(x)^2 + 5*log(x))*e^(-4) + 4) + 12*e^4 + 3*e^(6*(log(x)^2 + 5*log(x))*e^(-4) + 4))*e^(-4)/x
________________________________________________________________________________________
maple [A] time = 0.21, size = 28, normalized size = 1.33
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((48*x+36)*ln(x)-3*exp(4)+120*x+90)*exp((3*ln(x)^2+15*ln(x))/exp(4))^2-12*exp(4))/x^2/exp(4),x,method=_RE
TURNVERBOSE)
[Out]
12/x+(3+4*x)/x*(x^(3*(5+ln(x))*exp(-4)))^2
________________________________________________________________________________________
maxima [C] time = 0.53, size = 361, normalized size = 17.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((48*x+36)*log(x)-3*exp(4)+120*x+90)*exp((3*log(x)^2+15*log(x))/exp(4))^2-12*exp(4))/x^2/exp(4),x,
algorithm="maxima")
[Out]
-1/12*(-3*I*sqrt(6)*sqrt(pi)*erf(-1/12*I*sqrt(6)*(e^4 - 30)*e^(-2) + I*sqrt(6)*e^(-2)*log(x))*e^(-1/24*(e^4 -
30)^2*e^(-4) + 6) + 90*I*sqrt(6)*sqrt(pi)*erf(-1/12*I*sqrt(6)*(e^4 - 30)*e^(-2) + I*sqrt(6)*e^(-2)*log(x))*e^(
-1/24*(e^4 - 30)^2*e^(-4) + 2) + 120*I*sqrt(6)*sqrt(pi)*erf(I*sqrt(6)*e^(-2)*log(x) + 5/2*I*sqrt(6)*e^(-2))*e^
(-75/2*e^(-4) + 2) + 3*sqrt(6)*(sqrt(6)*sqrt(1/6)*sqrt(pi)*((e^4 - 30)*e^(-4) - 12*e^(-4)*log(x))*(erf(1/2*sqr
t(1/6)*sqrt(-((e^4 - 30)*e^(-4) - 12*e^(-4)*log(x))^2*e^4)) - 1)*(e^4 - 30)*e^2/sqrt(-((e^4 - 30)*e^(-4) - 12*
e^(-4)*log(x))^2*e^4) - 2*sqrt(6)*e^(1/24*((e^4 - 30)*e^(-4) - 12*e^(-4)*log(x))^2*e^4 + 2))*e^(-1/24*(e^4 - 3
0)^2*e^(-4) + 2) + 8*sqrt(6)*(15*sqrt(pi)*(2*e^(-4)*log(x) + 5*e^(-4))*(erf(sqrt(3/2)*sqrt(-(2*e^(-4)*log(x) +
5*e^(-4))^2*e^4)) - 1)*e^2/sqrt(-(2*e^(-4)*log(x) + 5*e^(-4))^2*e^4) - sqrt(6)*e^(3/2*(2*e^(-4)*log(x) + 5*e^
(-4))^2*e^4 + 2))*e^(-75/2*e^(-4) + 2) - 144*e^4/x)*e^(-4)
________________________________________________________________________________________
mupad [B] time = 5.28, size = 41, normalized size = 1.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(-4)*(12*exp(4) - exp(2*exp(-4)*(15*log(x) + 3*log(x)^2))*(120*x - 3*exp(4) + log(x)*(48*x + 36) + 90
)))/x^2,x)
[Out]
(3*x^(30*exp(-4))*exp(6*exp(-4)*log(x)^2) + 12)/x + 4*x^(30*exp(-4))*exp(6*exp(-4)*log(x)^2)
________________________________________________________________________________________
sympy [A] time = 0.30, size = 26, normalized size = 1.24
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((48*x+36)*ln(x)-3*exp(4)+120*x+90)*exp((3*ln(x)**2+15*ln(x))/exp(4))**2-12*exp(4))/x**2/exp(4),x)
[Out]
(4*x + 3)*exp(2*(3*log(x)**2 + 15*log(x))*exp(-4))/x + 12/x
________________________________________________________________________________________