3.85.17 135180x9x212x34x4+ex(9x2+21x3+16x4+4x5)9x2+12x3+4x4dx

Optimal. Leaf size=34 5(2+42+3x+3x)+(1+exx)x+x2

________________________________________________________________________________________

Rubi [A]  time = 0.44, antiderivative size = 30, normalized size of antiderivative = 0.88, number of steps used = 14, number of rules used = 7, integrand size = 64, number of rulesintegrand size = 0.109, Rules used = {1594, 27, 6742, 2176, 2194, 44, 43} xex+ex(x+1)302x+3+15x

Antiderivative was successfully verified.

[In]

Int[(-135 - 180*x - 9*x^2 - 12*x^3 - 4*x^4 + E^x*(9*x^2 + 21*x^3 + 16*x^4 + 4*x^5))/(9*x^2 + 12*x^3 + 4*x^4),x
]

[Out]

-E^x + 15/x - x + E^x*(1 + x) - 30/(3 + 2*x)

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=135180x9x212x34x4+ex(9x2+21x3+16x4+4x5)x2(9+12x+4x2)dx=135180x9x212x34x4+ex(9x2+21x3+16x4+4x5)x2(3+2x)2dx=(ex(1+x)9(3+2x)2135x2(3+2x)2180x(3+2x)212x(3+2x)24x2(3+2x)2)dx=92(3+2x)4x2(3+2x)2dx12x(3+2x)2dx1351x2(3+2x)2dx1801x(3+2x)2dx+ex(1+x)dx=ex(1+x)+92(3+2x)4(14+94(3+2x)232(3+2x))dx12(32(3+2x)2+12(3+2x))dx135(19x2427x+49(3+2x)2+827(3+2x))dx180(19x23(3+2x)229(3+2x))dxexdx=ex+15xx+ex(1+x)303+2x

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 23, normalized size = 0.68 15xx+exx303+2x

Antiderivative was successfully verified.

[In]

Integrate[(-135 - 180*x - 9*x^2 - 12*x^3 - 4*x^4 + E^x*(9*x^2 + 21*x^3 + 16*x^4 + 4*x^5))/(9*x^2 + 12*x^3 + 4*
x^4),x]

[Out]

15/x - x + E^x*x - 30/(3 + 2*x)

________________________________________________________________________________________

fricas [A]  time = 0.95, size = 40, normalized size = 1.18 2x3+3x2(2x3+3x2)ex452x2+3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^5+16*x^4+21*x^3+9*x^2)*exp(x)-4*x^4-12*x^3-9*x^2-180*x-135)/(4*x^4+12*x^3+9*x^2),x, algorithm=
"fricas")

[Out]

-(2*x^3 + 3*x^2 - (2*x^3 + 3*x^2)*e^x - 45)/(2*x^2 + 3*x)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 38, normalized size = 1.12 2x3ex2x3+3x2ex3x2+452x2+3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^5+16*x^4+21*x^3+9*x^2)*exp(x)-4*x^4-12*x^3-9*x^2-180*x-135)/(4*x^4+12*x^3+9*x^2),x, algorithm=
"giac")

[Out]

(2*x^3*e^x - 2*x^3 + 3*x^2*e^x - 3*x^2 + 45)/(2*x^2 + 3*x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 21, normalized size = 0.62




method result size



risch x+45x(2x+3)+exx 21
default 15x302x+3x+exx 23
norman 45+9x22x3+3exx2+2exx3x(2x+3) 36



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*x^5+16*x^4+21*x^3+9*x^2)*exp(x)-4*x^4-12*x^3-9*x^2-180*x-135)/(4*x^4+12*x^3+9*x^2),x,method=_RETURNVER
BOSE)

[Out]

-x+45/x/(2*x+3)+exp(x)*x

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 xexx9e(32)E2(x32)2(2x+3)+15(4x+3)2x2+3x602x+39ex4x2+12x+9dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^5+16*x^4+21*x^3+9*x^2)*exp(x)-4*x^4-12*x^3-9*x^2-180*x-135)/(4*x^4+12*x^3+9*x^2),x, algorithm=
"maxima")

[Out]

x*e^x - x - 9/2*e^(-3/2)*exp_integral_e(2, -x - 3/2)/(2*x + 3) + 15*(4*x + 3)/(2*x^2 + 3*x) - 60/(2*x + 3) - 9
*integrate(e^x/(4*x^2 + 12*x + 9), x)

________________________________________________________________________________________

mupad [B]  time = 0.13, size = 20, normalized size = 0.59 x(ex1)+452x2+3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(180*x - exp(x)*(9*x^2 + 21*x^3 + 16*x^4 + 4*x^5) + 9*x^2 + 12*x^3 + 4*x^4 + 135)/(9*x^2 + 12*x^3 + 4*x^4
),x)

[Out]

x*(exp(x) - 1) + 45/(3*x + 2*x^2)

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 15, normalized size = 0.44 xexx+452x2+3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x**5+16*x**4+21*x**3+9*x**2)*exp(x)-4*x**4-12*x**3-9*x**2-180*x-135)/(4*x**4+12*x**3+9*x**2),x)

[Out]

x*exp(x) - x + 45/(2*x**2 + 3*x)

________________________________________________________________________________________