3.85.17
Optimal. Leaf size=34
________________________________________________________________________________________
Rubi [A] time = 0.44, antiderivative size = 30, normalized size of antiderivative = 0.88,
number of steps used = 14, number of rules used = 7, integrand size = 64, = 0.109, Rules used
= {1594, 27, 6742, 2176, 2194, 44, 43}
Antiderivative was successfully verified.
[In]
Int[(-135 - 180*x - 9*x^2 - 12*x^3 - 4*x^4 + E^x*(9*x^2 + 21*x^3 + 16*x^4 + 4*x^5))/(9*x^2 + 12*x^3 + 4*x^4),x
]
[Out]
-E^x + 15/x - x + E^x*(1 + x) - 30/(3 + 2*x)
Rule 27
Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
Rule 43
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
Rule 44
Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] && !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])
Rule 1594
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 23, normalized size = 0.68
Antiderivative was successfully verified.
[In]
Integrate[(-135 - 180*x - 9*x^2 - 12*x^3 - 4*x^4 + E^x*(9*x^2 + 21*x^3 + 16*x^4 + 4*x^5))/(9*x^2 + 12*x^3 + 4*
x^4),x]
[Out]
15/x - x + E^x*x - 30/(3 + 2*x)
________________________________________________________________________________________
fricas [A] time = 0.95, size = 40, normalized size = 1.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^5+16*x^4+21*x^3+9*x^2)*exp(x)-4*x^4-12*x^3-9*x^2-180*x-135)/(4*x^4+12*x^3+9*x^2),x, algorithm=
"fricas")
[Out]
-(2*x^3 + 3*x^2 - (2*x^3 + 3*x^2)*e^x - 45)/(2*x^2 + 3*x)
________________________________________________________________________________________
giac [A] time = 0.19, size = 38, normalized size = 1.12
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^5+16*x^4+21*x^3+9*x^2)*exp(x)-4*x^4-12*x^3-9*x^2-180*x-135)/(4*x^4+12*x^3+9*x^2),x, algorithm=
"giac")
[Out]
(2*x^3*e^x - 2*x^3 + 3*x^2*e^x - 3*x^2 + 45)/(2*x^2 + 3*x)
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.62
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
default |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((4*x^5+16*x^4+21*x^3+9*x^2)*exp(x)-4*x^4-12*x^3-9*x^2-180*x-135)/(4*x^4+12*x^3+9*x^2),x,method=_RETURNVER
BOSE)
[Out]
-x+45/x/(2*x+3)+exp(x)*x
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^5+16*x^4+21*x^3+9*x^2)*exp(x)-4*x^4-12*x^3-9*x^2-180*x-135)/(4*x^4+12*x^3+9*x^2),x, algorithm=
"maxima")
[Out]
x*e^x - x - 9/2*e^(-3/2)*exp_integral_e(2, -x - 3/2)/(2*x + 3) + 15*(4*x + 3)/(2*x^2 + 3*x) - 60/(2*x + 3) - 9
*integrate(e^x/(4*x^2 + 12*x + 9), x)
________________________________________________________________________________________
mupad [B] time = 0.13, size = 20, normalized size = 0.59
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(180*x - exp(x)*(9*x^2 + 21*x^3 + 16*x^4 + 4*x^5) + 9*x^2 + 12*x^3 + 4*x^4 + 135)/(9*x^2 + 12*x^3 + 4*x^4
),x)
[Out]
x*(exp(x) - 1) + 45/(3*x + 2*x^2)
________________________________________________________________________________________
sympy [A] time = 0.16, size = 15, normalized size = 0.44
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x**5+16*x**4+21*x**3+9*x**2)*exp(x)-4*x**4-12*x**3-9*x**2-180*x-135)/(4*x**4+12*x**3+9*x**2),x)
[Out]
x*exp(x) - x + 45/(2*x**2 + 3*x)
________________________________________________________________________________________