Optimal. Leaf size=34 \[ 5 \left (2+\frac {4}{2+\frac {3}{x}}+\frac {3}{x}\right )+\left (-1+e^x-x\right ) x+x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.44, antiderivative size = 30, normalized size of antiderivative = 0.88, number of steps used = 14, number of rules used = 7, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.109, Rules used = {1594, 27, 6742, 2176, 2194, 44, 43} \begin {gather*} -x-e^x+e^x (x+1)-\frac {30}{2 x+3}+\frac {15}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 43
Rule 44
Rule 1594
Rule 2176
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-135-180 x-9 x^2-12 x^3-4 x^4+e^x \left (9 x^2+21 x^3+16 x^4+4 x^5\right )}{x^2 \left (9+12 x+4 x^2\right )} \, dx\\ &=\int \frac {-135-180 x-9 x^2-12 x^3-4 x^4+e^x \left (9 x^2+21 x^3+16 x^4+4 x^5\right )}{x^2 (3+2 x)^2} \, dx\\ &=\int \left (e^x (1+x)-\frac {9}{(3+2 x)^2}-\frac {135}{x^2 (3+2 x)^2}-\frac {180}{x (3+2 x)^2}-\frac {12 x}{(3+2 x)^2}-\frac {4 x^2}{(3+2 x)^2}\right ) \, dx\\ &=\frac {9}{2 (3+2 x)}-4 \int \frac {x^2}{(3+2 x)^2} \, dx-12 \int \frac {x}{(3+2 x)^2} \, dx-135 \int \frac {1}{x^2 (3+2 x)^2} \, dx-180 \int \frac {1}{x (3+2 x)^2} \, dx+\int e^x (1+x) \, dx\\ &=e^x (1+x)+\frac {9}{2 (3+2 x)}-4 \int \left (\frac {1}{4}+\frac {9}{4 (3+2 x)^2}-\frac {3}{2 (3+2 x)}\right ) \, dx-12 \int \left (-\frac {3}{2 (3+2 x)^2}+\frac {1}{2 (3+2 x)}\right ) \, dx-135 \int \left (\frac {1}{9 x^2}-\frac {4}{27 x}+\frac {4}{9 (3+2 x)^2}+\frac {8}{27 (3+2 x)}\right ) \, dx-180 \int \left (\frac {1}{9 x}-\frac {2}{3 (3+2 x)^2}-\frac {2}{9 (3+2 x)}\right ) \, dx-\int e^x \, dx\\ &=-e^x+\frac {15}{x}-x+e^x (1+x)-\frac {30}{3+2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 23, normalized size = 0.68 \begin {gather*} \frac {15}{x}-x+e^x x-\frac {30}{3+2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 40, normalized size = 1.18 \begin {gather*} -\frac {2 \, x^{3} + 3 \, x^{2} - {\left (2 \, x^{3} + 3 \, x^{2}\right )} e^{x} - 45}{2 \, x^{2} + 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 38, normalized size = 1.12 \begin {gather*} \frac {2 \, x^{3} e^{x} - 2 \, x^{3} + 3 \, x^{2} e^{x} - 3 \, x^{2} + 45}{2 \, x^{2} + 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.62
method | result | size |
risch | \(-x +\frac {45}{x \left (2 x +3\right )}+{\mathrm e}^{x} x\) | \(21\) |
default | \(\frac {15}{x}-\frac {30}{2 x +3}-x +{\mathrm e}^{x} x\) | \(23\) |
norman | \(\frac {45+\frac {9 x}{2}-2 x^{3}+3 \,{\mathrm e}^{x} x^{2}+2 \,{\mathrm e}^{x} x^{3}}{x \left (2 x +3\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x e^{x} - x - \frac {9 \, e^{\left (-\frac {3}{2}\right )} E_{2}\left (-x - \frac {3}{2}\right )}{2 \, {\left (2 \, x + 3\right )}} + \frac {15 \, {\left (4 \, x + 3\right )}}{2 \, x^{2} + 3 \, x} - \frac {60}{2 \, x + 3} - 9 \, \int \frac {e^{x}}{4 \, x^{2} + 12 \, x + 9}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 20, normalized size = 0.59 \begin {gather*} x\,\left ({\mathrm {e}}^x-1\right )+\frac {45}{2\,x^2+3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 15, normalized size = 0.44 \begin {gather*} x e^{x} - x + \frac {45}{2 x^{2} + 3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________