Optimal. Leaf size=23 \[ -5^{e^{4+e^{(-1+4 x+\log (100))^2}}}+x^2 \]
________________________________________________________________________________________
Rubi [A] time = 4.88, antiderivative size = 36, normalized size of antiderivative = 1.57, number of steps used = 2, number of rules used = 1, integrand size = 98, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {6706} \begin {gather*} x^2-5^{e^{100^{8 x-2} e^{16 x^2-8 x+1+\log ^2(100)}+4}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x^2+\int 5^{\exp \left (4+\exp \left (1-8 x+16 x^2+(-2+8 x) \log (100)+\log ^2(100)\right )\right )} \exp \left (5+\exp \left (1-8 x+16 x^2+(-2+8 x) \log (100)+\log ^2(100)\right )-8 x+16 x^2+(-2+8 x) \log (100)+\log ^2(100)\right ) ((8-32 x) \log (5)-8 \log (5) \log (100)) \, dx\\ &=-5^{e^{4+100^{-2+8 x} e^{1-8 x+16 x^2+\log ^2(100)}}}+x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 5.06, size = 0, normalized size = 0.00 \begin {gather*} \int \left (2 x+5^{e^{4+e^{1-8 x+16 x^2+(-2+8 x) \log (100)+\log ^2(100)}}} e^{5+e^{1-8 x+16 x^2+(-2+8 x) \log (100)+\log ^2(100)}-8 x+16 x^2+(-2+8 x) \log (100)+\log ^2(100)} ((8-32 x) \log (5)-8 \log (5) \log (100))\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 37, normalized size = 1.61 \begin {gather*} x^{2} - 5^{e^{\left (e^{\left (16 \, x^{2} + 4 \, {\left (4 \, x - 1\right )} \log \left (10\right ) + 4 \, \log \left (10\right )^{2} - 8 \, x + 1\right )} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 37, normalized size = 1.61 \begin {gather*} x^{2} - 5^{e^{\left (e^{\left (16 \, x^{2} + 16 \, x \log \left (10\right ) + 4 \, \log \left (10\right )^{2} - 8 \, x - 4 \, \log \left (10\right ) + 1\right )} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 28, normalized size = 1.22
method | result | size |
risch | \(-5^{{\mathrm e}^{{\mathrm e}^{\left (2 \ln \relax (2)+2 \ln \relax (5)+4 x -1\right )^{2}}+4}}+x^{2}\) | \(28\) |
default | \(-{\mathrm e}^{\ln \relax (5) {\mathrm e}^{{\mathrm e}^{4 \ln \left (10\right )^{2}+2 \left (8 x -2\right ) \ln \left (10\right )+16 x^{2}-8 x +1}+4}}+x^{2}\) | \(40\) |
norman | \(-{\mathrm e}^{\ln \relax (5) {\mathrm e}^{{\mathrm e}^{4 \ln \left (10\right )^{2}+2 \left (8 x -2\right ) \ln \left (10\right )+16 x^{2}-8 x +1}+4}}+x^{2}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.07, size = 54, normalized size = 2.35 \begin {gather*} x^{2} - 5^{e^{\left (\frac {1}{625} \cdot 2^{8 \, \log \relax (5) - 4} e^{\left (16 \, x^{2} + 16 \, x \log \relax (5) + 4 \, \log \relax (5)^{2} + 16 \, x \log \relax (2) + 4 \, \log \relax (2)^{2} - 8 \, x + 1\right )} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.44, size = 37, normalized size = 1.61 \begin {gather*} x^2-5^{{\mathrm {e}}^{\frac {{10}^{16\,x}\,{\mathrm {e}}^{-8\,x}\,\mathrm {e}\,{\mathrm {e}}^{4\,{\ln \left (10\right )}^2}\,{\mathrm {e}}^{16\,x^2}}{10000}+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.60, size = 37, normalized size = 1.61 \begin {gather*} x^{2} - e^{e^{e^{16 x^{2} - 8 x + \left (16 x - 4\right ) \log {\left (10 \right )} + 1 + 4 \log {\left (10 \right )}^{2}} + 4} \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________