3.85.19 ex2x+5x2+e1x4x2x2+(5x2+2ex2x3+e1x4x2(2+x22x4))log(x)x2dx

Optimal. Leaf size=24 (ex2+(5+e1x2x2)x)log(x)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 45, normalized size of antiderivative = 1.88, number of steps used = 6, number of rules used = 3, integrand size = 77, number of rulesintegrand size = 0.039, Rules used = {14, 2295, 2288} ex2log(x)+e1x2x2(x4log(x)+log(x))x2(1x3+x)+5xlog(x)

Antiderivative was successfully verified.

[In]

Int[(E^x^2*x + 5*x^2 + E^((1 - x^4)/x^2)*x^2 + (5*x^2 + 2*E^x^2*x^3 + E^((1 - x^4)/x^2)*(-2 + x^2 - 2*x^4))*Lo
g[x])/x^2,x]

[Out]

E^x^2*Log[x] + 5*x*Log[x] + (E^(x^(-2) - x^2)*(Log[x] + x^4*Log[x]))/(x^2*(x^(-3) + x))

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rubi steps

integral=(5(1+log(x))+ex2(1+2x2log(x))xe1x2x2(x2+2log(x)x2log(x)+2x4log(x))x2)dx=5(1+log(x))dx+ex2(1+2x2log(x))xdxe1x2x2(x2+2log(x)x2log(x)+2x4log(x))x2dx=5x+ex2log(x)+e1x2x2(log(x)+x4log(x))x2(1x3+x)+5log(x)dx=ex2log(x)+5xlog(x)+e1x2x2(log(x)+x4log(x))x2(1x3+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 25, normalized size = 1.04 (ex2+5x+e1x2x2x)log(x)

Antiderivative was successfully verified.

[In]

Integrate[(E^x^2*x + 5*x^2 + E^((1 - x^4)/x^2)*x^2 + (5*x^2 + 2*E^x^2*x^3 + E^((1 - x^4)/x^2)*(-2 + x^2 - 2*x^
4))*Log[x])/x^2,x]

[Out]

(E^x^2 + 5*x + E^(x^(-2) - x^2)*x)*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 24, normalized size = 1.00 (xe(x41x2)+5x+e(x2))log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(x^2)+(-2*x^4+x^2-2)*exp((-x^4+1)/x^2)+5*x^2)*log(x)+exp(x^2)*x+x^2*exp((-x^4+1)/x^2)+5*x
^2)/x^2,x, algorithm="fricas")

[Out]

(x*e^(-(x^4 - 1)/x^2) + 5*x + e^(x^2))*log(x)

________________________________________________________________________________________

giac [A]  time = 0.20, size = 28, normalized size = 1.17 xe(x41x2)log(x)+5xlog(x)+e(x2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(x^2)+(-2*x^4+x^2-2)*exp((-x^4+1)/x^2)+5*x^2)*log(x)+exp(x^2)*x+x^2*exp((-x^4+1)/x^2)+5*x
^2)/x^2,x, algorithm="giac")

[Out]

x*e^(-(x^4 - 1)/x^2)*log(x) + 5*x*log(x) + e^(x^2)*log(x)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 30, normalized size = 1.25




method result size



default xex4+1x2ln(x)+ex2ln(x)+5xln(x) 30
risch (xe(x1)(x+1)(x2+1)x2+5x+ex2)ln(x) 31



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^3*exp(x^2)+(-2*x^4+x^2-2)*exp((-x^4+1)/x^2)+5*x^2)*ln(x)+exp(x^2)*x+x^2*exp((-x^4+1)/x^2)+5*x^2)/x^2
,x,method=_RETURNVERBOSE)

[Out]

x*exp((-x^4+1)/x^2)*ln(x)+exp(x^2)*ln(x)+5*x*ln(x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 14π(erfc(x+ix)e(4i)erfc(x+ix))e(2i)+5xlog(x)+e(x2)log(x)+12Ei(x2)(2x4x2+2)e(x2+1x2)log(x)x2dxe(x2)xdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(x^2)+(-2*x^4+x^2-2)*exp((-x^4+1)/x^2)+5*x^2)*log(x)+exp(x^2)*x+x^2*exp((-x^4+1)/x^2)+5*x
^2)/x^2,x, algorithm="maxima")

[Out]

-1/4*sqrt(pi)*(erfc(x + I/x)*e^(4*I) - erfc(-x + I/x))*e^(-2*I) + 5*x*log(x) + e^(x^2)*log(x) + 1/2*Ei(x^2) -
integrate((2*x^4 - x^2 + 2)*e^(-x^2 + 1/x^2)*log(x)/x^2, x) - integrate(e^(x^2)/x, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 x2ex41x2+xex2+ln(x)(2x3ex2+5x2ex41x2(2x4x2+2))+5x2x2dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*exp(-(x^4 - 1)/x^2) + x*exp(x^2) + log(x)*(2*x^3*exp(x^2) + 5*x^2 - exp(-(x^4 - 1)/x^2)*(2*x^4 - x^2
+ 2)) + 5*x^2)/x^2,x)

[Out]

int((x^2*exp(-(x^4 - 1)/x^2) + x*exp(x^2) + log(x)*(2*x^3*exp(x^2) + 5*x^2 - exp(-(x^4 - 1)/x^2)*(2*x^4 - x^2
+ 2)) + 5*x^2)/x^2, x)

________________________________________________________________________________________

sympy [A]  time = 0.58, size = 29, normalized size = 1.21 xe1x4x2log(x)+5xlog(x)+ex2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**3*exp(x**2)+(-2*x**4+x**2-2)*exp((-x**4+1)/x**2)+5*x**2)*ln(x)+exp(x**2)*x+x**2*exp((-x**4+1)
/x**2)+5*x**2)/x**2,x)

[Out]

x*exp((1 - x**4)/x**2)*log(x) + 5*x*log(x) + exp(x**2)*log(x)

________________________________________________________________________________________