3.85.19
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 45, normalized size of antiderivative = 1.88,
number of steps used = 6, number of rules used = 3, integrand size = 77, = 0.039, Rules used =
{14, 2295, 2288}
Antiderivative was successfully verified.
[In]
Int[(E^x^2*x + 5*x^2 + E^((1 - x^4)/x^2)*x^2 + (5*x^2 + 2*E^x^2*x^3 + E^((1 - x^4)/x^2)*(-2 + x^2 - 2*x^4))*Lo
g[x])/x^2,x]
[Out]
E^x^2*Log[x] + 5*x*Log[x] + (E^(x^(-2) - x^2)*(Log[x] + x^4*Log[x]))/(x^2*(x^(-3) + x))
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 25, normalized size = 1.04
Antiderivative was successfully verified.
[In]
Integrate[(E^x^2*x + 5*x^2 + E^((1 - x^4)/x^2)*x^2 + (5*x^2 + 2*E^x^2*x^3 + E^((1 - x^4)/x^2)*(-2 + x^2 - 2*x^
4))*Log[x])/x^2,x]
[Out]
(E^x^2 + 5*x + E^(x^(-2) - x^2)*x)*Log[x]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 24, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^3*exp(x^2)+(-2*x^4+x^2-2)*exp((-x^4+1)/x^2)+5*x^2)*log(x)+exp(x^2)*x+x^2*exp((-x^4+1)/x^2)+5*x
^2)/x^2,x, algorithm="fricas")
[Out]
(x*e^(-(x^4 - 1)/x^2) + 5*x + e^(x^2))*log(x)
________________________________________________________________________________________
giac [A] time = 0.20, size = 28, normalized size = 1.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^3*exp(x^2)+(-2*x^4+x^2-2)*exp((-x^4+1)/x^2)+5*x^2)*log(x)+exp(x^2)*x+x^2*exp((-x^4+1)/x^2)+5*x
^2)/x^2,x, algorithm="giac")
[Out]
x*e^(-(x^4 - 1)/x^2)*log(x) + 5*x*log(x) + e^(x^2)*log(x)
________________________________________________________________________________________
maple [A] time = 0.08, size = 30, normalized size = 1.25
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*x^3*exp(x^2)+(-2*x^4+x^2-2)*exp((-x^4+1)/x^2)+5*x^2)*ln(x)+exp(x^2)*x+x^2*exp((-x^4+1)/x^2)+5*x^2)/x^2
,x,method=_RETURNVERBOSE)
[Out]
x*exp((-x^4+1)/x^2)*ln(x)+exp(x^2)*ln(x)+5*x*ln(x)
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^3*exp(x^2)+(-2*x^4+x^2-2)*exp((-x^4+1)/x^2)+5*x^2)*log(x)+exp(x^2)*x+x^2*exp((-x^4+1)/x^2)+5*x
^2)/x^2,x, algorithm="maxima")
[Out]
-1/4*sqrt(pi)*(erfc(x + I/x)*e^(4*I) - erfc(-x + I/x))*e^(-2*I) + 5*x*log(x) + e^(x^2)*log(x) + 1/2*Ei(x^2) -
integrate((2*x^4 - x^2 + 2)*e^(-x^2 + 1/x^2)*log(x)/x^2, x) - integrate(e^(x^2)/x, x)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((x^2*exp(-(x^4 - 1)/x^2) + x*exp(x^2) + log(x)*(2*x^3*exp(x^2) + 5*x^2 - exp(-(x^4 - 1)/x^2)*(2*x^4 - x^2
+ 2)) + 5*x^2)/x^2,x)
[Out]
int((x^2*exp(-(x^4 - 1)/x^2) + x*exp(x^2) + log(x)*(2*x^3*exp(x^2) + 5*x^2 - exp(-(x^4 - 1)/x^2)*(2*x^4 - x^2
+ 2)) + 5*x^2)/x^2, x)
________________________________________________________________________________________
sympy [A] time = 0.58, size = 29, normalized size = 1.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x**3*exp(x**2)+(-2*x**4+x**2-2)*exp((-x**4+1)/x**2)+5*x**2)*ln(x)+exp(x**2)*x+x**2*exp((-x**4+1)
/x**2)+5*x**2)/x**2,x)
[Out]
x*exp((1 - x**4)/x**2)*log(x) + 5*x*log(x) + exp(x**2)*log(x)
________________________________________________________________________________________