3.85.23
Optimal. Leaf size=30
________________________________________________________________________________________
Rubi [F] time = 3.26, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^5*(4 - 2*x) + 5*x^2 + E^x^2*(-10*x^3 + E^5*(1 + 2*x^2)) - E^5*(I*Pi + Log[25]))/(16*x^2 + E^(2*x^2)*x^2
- 8*x^3 + x^4 + (-8*x^2 + 2*x^3)*(I*Pi + Log[25]) + x^2*(I*Pi + Log[25])^2 + E^x^2*(8*x^2 - 2*x^3 - 2*x^2*(I*
Pi + Log[25]))),x]
[Out]
10*Defer[Int][x/(-E^x^2 + x - 4*(1 - (I/4)*(Pi - (2*I)*Log[5]))), x] - (5 - E^5*(8 - (2*I)*Pi - Log[625]))*Def
er[Int][(I*E^x^2 - I*x + (4*I)*(1 - (I/4)*(Pi - (2*I)*Log[5])))^(-2), x] - E^5*Defer[Int][1/(x*(E^x^2 - x + 4*
(1 - (I/4)*(Pi - (2*I)*Log[5])))^2), x] + (40 + 2*E^5 - (10*I)*Pi - 5*Log[625])*Defer[Int][x/(E^x^2 - x + 4*(1
- (I/4)*(Pi - (2*I)*Log[5])))^2, x] - 10*Defer[Int][x^2/(E^x^2 - x + 4*(1 - (I/4)*(Pi - (2*I)*Log[5])))^2, x]
+ 2*E^5*Defer[Int][(E^x^2 - x + 4*(1 - (I/4)*(Pi - (2*I)*Log[5])))^(-1), x] + E^5*Defer[Int][1/(x^2*(E^x^2 -
x + 4*(1 - (I/4)*(Pi - (2*I)*Log[5])))), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.83, size = 30, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(E^5*(4 - 2*x) + 5*x^2 + E^x^2*(-10*x^3 + E^5*(1 + 2*x^2)) - E^5*(I*Pi + Log[25]))/(16*x^2 + E^(2*x^
2)*x^2 - 8*x^3 + x^4 + (-8*x^2 + 2*x^3)*(I*Pi + Log[25]) + x^2*(I*Pi + Log[25])^2 + E^x^2*(8*x^2 - 2*x^3 - 2*x
^2*(I*Pi + Log[25]))),x]
[Out]
(E^5 - 5*x)/(x*(-4 - E^x^2 + I*Pi + x + Log[25]))
________________________________________________________________________________________
fricas [A] time = 0.94, size = 35, normalized size = 1.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x^2+1)*exp(5)-10*x^3)*exp(x^2)-exp(5)*(2*log(5)+I*pi)+(4-2*x)*exp(5)+5*x^2)/(x^2*exp(x^2)^2+(-2
*x^2*(2*log(5)+I*pi)-2*x^3+8*x^2)*exp(x^2)+x^2*(2*log(5)+I*pi)^2+(2*x^3-8*x^2)*(2*log(5)+I*pi)+x^4-8*x^3+16*x^
2),x, algorithm="fricas")
[Out]
(5*x - e^5)/((-I*pi + 4)*x - x^2 + x*e^(x^2) - 2*x*log(5))
________________________________________________________________________________________
giac [A] time = 0.17, size = 35, normalized size = 1.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x^2+1)*exp(5)-10*x^3)*exp(x^2)-exp(5)*(2*log(5)+I*pi)+(4-2*x)*exp(5)+5*x^2)/(x^2*exp(x^2)^2+(-2
*x^2*(2*log(5)+I*pi)-2*x^3+8*x^2)*exp(x^2)+x^2*(2*log(5)+I*pi)^2+(2*x^3-8*x^2)*(2*log(5)+I*pi)+x^4-8*x^3+16*x^
2),x, algorithm="giac")
[Out]
(5*I*x - I*e^5)/(pi*x - I*x^2 + I*x*e^(x^2) - 2*I*x*log(5) + 4*I*x)
________________________________________________________________________________________
maple [A] time = 0.16, size = 30, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((2*x^2+1)*exp(5)-10*x^3)*exp(x^2)-exp(5)*(2*ln(5)+I*Pi)+(4-2*x)*exp(5)+5*x^2)/(x^2*exp(x^2)^2+(-2*x^2*(2
*ln(5)+I*Pi)-2*x^3+8*x^2)*exp(x^2)+x^2*(2*ln(5)+I*Pi)^2+(2*x^3-8*x^2)*(2*ln(5)+I*Pi)+x^4-8*x^3+16*x^2),x,metho
d=_RETURNVERBOSE)
[Out]
(exp(5)-5*x)/x/(2*ln(5)+I*Pi-4-exp(x^2)+x)
________________________________________________________________________________________
maxima [A] time = 2.11, size = 34, normalized size = 1.13
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x^2+1)*exp(5)-10*x^3)*exp(x^2)-exp(5)*(2*log(5)+I*pi)+(4-2*x)*exp(5)+5*x^2)/(x^2*exp(x^2)^2+(-2
*x^2*(2*log(5)+I*pi)-2*x^3+8*x^2)*exp(x^2)+x^2*(2*log(5)+I*pi)^2+(2*x^3-8*x^2)*(2*log(5)+I*pi)+x^4-8*x^3+16*x^
2),x, algorithm="maxima")
[Out]
(5*x - e^5)/((-I*pi - 2*log(5) + 4)*x - x^2 + x*e^(x^2))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(x^2)*(exp(5)*(2*x^2 + 1) - 10*x^3) - exp(5)*(Pi*1i + 2*log(5)) + 5*x^2 - exp(5)*(2*x - 4))/(x^2*(Pi*1
i + 2*log(5))^2 - (8*x^2 - 2*x^3)*(Pi*1i + 2*log(5)) - exp(x^2)*(2*x^2*(Pi*1i + 2*log(5)) - 8*x^2 + 2*x^3) + x
^2*exp(2*x^2) + 16*x^2 - 8*x^3 + x^4),x)
[Out]
int((exp(x^2)*(exp(5)*(2*x^2 + 1) - 10*x^3) - exp(5)*(Pi*1i + 2*log(5)) + 5*x^2 - exp(5)*(2*x - 4))/(x^2*(Pi*1
i + 2*log(5))^2 - (8*x^2 - 2*x^3)*(Pi*1i + 2*log(5)) - exp(x^2)*(2*x^2*(Pi*1i + 2*log(5)) - 8*x^2 + 2*x^3) + x
^2*exp(2*x^2) + 16*x^2 - 8*x^3 + x^4), x)
________________________________________________________________________________________
sympy [A] time = 21.92, size = 31, normalized size = 1.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x**2+1)*exp(5)-10*x**3)*exp(x**2)-exp(5)*(2*ln(5)+I*pi)+(4-2*x)*exp(5)+5*x**2)/(x**2*exp(x**2)*
*2+(-2*x**2*(2*ln(5)+I*pi)-2*x**3+8*x**2)*exp(x**2)+x**2*(2*ln(5)+I*pi)**2+(2*x**3-8*x**2)*(2*ln(5)+I*pi)+x**4
-8*x**3+16*x**2),x)
[Out]
(-5*x + exp(5))/(x**2 - x*exp(x**2) - 4*x + 2*x*log(5) + I*pi*x)
________________________________________________________________________________________