3.85.23 e5(42x)+5x2+ex2(10x3+e5(1+2x2))e5(iπ+log(25))16x2+e2x2x28x3+x4+(8x2+2x3)(iπ+log(25))+x2(iπ+log(25))2+ex2(8x22x32x2(iπ+log(25)))dx

Optimal. Leaf size=30 e55xx(4ex2+iπ+x+log(25))

________________________________________________________________________________________

Rubi [F]  time = 3.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e5(42x)+5x2+ex2(10x3+e5(1+2x2))e5(iπ+log(25))16x2+e2x2x28x3+x4+(8x2+2x3)(iπ+log(25))+x2(iπ+log(25))2+ex2(8x22x32x2(iπ+log(25)))dx

Verification is not applicable to the result.

[In]

Int[(E^5*(4 - 2*x) + 5*x^2 + E^x^2*(-10*x^3 + E^5*(1 + 2*x^2)) - E^5*(I*Pi + Log[25]))/(16*x^2 + E^(2*x^2)*x^2
 - 8*x^3 + x^4 + (-8*x^2 + 2*x^3)*(I*Pi + Log[25]) + x^2*(I*Pi + Log[25])^2 + E^x^2*(8*x^2 - 2*x^3 - 2*x^2*(I*
Pi + Log[25]))),x]

[Out]

10*Defer[Int][x/(-E^x^2 + x - 4*(1 - (I/4)*(Pi - (2*I)*Log[5]))), x] - (5 - E^5*(8 - (2*I)*Pi - Log[625]))*Def
er[Int][(I*E^x^2 - I*x + (4*I)*(1 - (I/4)*(Pi - (2*I)*Log[5])))^(-2), x] - E^5*Defer[Int][1/(x*(E^x^2 - x + 4*
(1 - (I/4)*(Pi - (2*I)*Log[5])))^2), x] + (40 + 2*E^5 - (10*I)*Pi - 5*Log[625])*Defer[Int][x/(E^x^2 - x + 4*(1
 - (I/4)*(Pi - (2*I)*Log[5])))^2, x] - 10*Defer[Int][x^2/(E^x^2 - x + 4*(1 - (I/4)*(Pi - (2*I)*Log[5])))^2, x]
 + 2*E^5*Defer[Int][(E^x^2 - x + 4*(1 - (I/4)*(Pi - (2*I)*Log[5])))^(-1), x] + E^5*Defer[Int][1/(x^2*(E^x^2 -
x + 4*(1 - (I/4)*(Pi - (2*I)*Log[5])))), x]

Rubi steps

integral=e5(42x)+5x2+ex2(10x3+e5(1+2x2))e5(iπ+log(25))e2x2x28x3+x4+(8x2+2x3)(iπ+log(25))+ex2(8x22x32x2(iπ+log(25)))+x2(16+(iπ+log(25))2)dx=5x210ex2x3+e5+x2(1+2x2)+e5(4iπ2xlog(25))x2(ex2x+4(114i(π2ilog(5))))2dx=(e5+2e5x210x3x2(ex2x+4(114i(π2ilog(5))))+(e55x)(1+2x2x(82iπlog(625)))x(ex2x+4(114i(π2ilog(5))))2)dx=e5+2e5x210x3x2(ex2x+4(114i(π2ilog(5))))dx+(e55x)(1+2x2x(82iπlog(625)))x(ex2x+4(114i(π2ilog(5))))2dx=(10xex2+x4(114i(π2ilog(5)))+2e5ex2x+4(114i(π2ilog(5)))+e5x2(ex2x+4(114i(π2ilog(5)))))dx+(e5x(ex2x+4(114i(π2ilog(5))))210x2(ex2x+4(114i(π2ilog(5))))22ie5π(1i(5+4e5(2+log(5)))2e5π)(iex2ix+4i(114i(π2ilog(5))))2+x(40+2e510iπ5log(625))(ex2x+4(114i(π2ilog(5))))2)dx=10xex2+x4(114i(π2ilog(5)))dx10x2(ex2x+4(114i(π2ilog(5))))2dxe51x(ex2x+4(114i(π2ilog(5))))2dx+e51x2(ex2x+4(114i(π2ilog(5))))dx+(2e5)1ex2x+4(114i(π2ilog(5)))dx(5e5(82iπlog(625)))1(iex2ix+4i(114i(π2ilog(5))))2dx+(40+2e510iπ5log(625))x(ex2x+4(114i(π2ilog(5))))2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.83, size = 30, normalized size = 1.00 e55xx(4ex2+iπ+x+log(25))

Antiderivative was successfully verified.

[In]

Integrate[(E^5*(4 - 2*x) + 5*x^2 + E^x^2*(-10*x^3 + E^5*(1 + 2*x^2)) - E^5*(I*Pi + Log[25]))/(16*x^2 + E^(2*x^
2)*x^2 - 8*x^3 + x^4 + (-8*x^2 + 2*x^3)*(I*Pi + Log[25]) + x^2*(I*Pi + Log[25])^2 + E^x^2*(8*x^2 - 2*x^3 - 2*x
^2*(I*Pi + Log[25]))),x]

[Out]

(E^5 - 5*x)/(x*(-4 - E^x^2 + I*Pi + x + Log[25]))

________________________________________________________________________________________

fricas [A]  time = 0.94, size = 35, normalized size = 1.17 5xe5(iπ+4)xx2+xe(x2)2xlog(5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^2+1)*exp(5)-10*x^3)*exp(x^2)-exp(5)*(2*log(5)+I*pi)+(4-2*x)*exp(5)+5*x^2)/(x^2*exp(x^2)^2+(-2
*x^2*(2*log(5)+I*pi)-2*x^3+8*x^2)*exp(x^2)+x^2*(2*log(5)+I*pi)^2+(2*x^3-8*x^2)*(2*log(5)+I*pi)+x^4-8*x^3+16*x^
2),x, algorithm="fricas")

[Out]

(5*x - e^5)/((-I*pi + 4)*x - x^2 + x*e^(x^2) - 2*x*log(5))

________________________________________________________________________________________

giac [A]  time = 0.17, size = 35, normalized size = 1.17 5ixie5πxix2+ixe(x2)2ixlog(5)+4ix

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^2+1)*exp(5)-10*x^3)*exp(x^2)-exp(5)*(2*log(5)+I*pi)+(4-2*x)*exp(5)+5*x^2)/(x^2*exp(x^2)^2+(-2
*x^2*(2*log(5)+I*pi)-2*x^3+8*x^2)*exp(x^2)+x^2*(2*log(5)+I*pi)^2+(2*x^3-8*x^2)*(2*log(5)+I*pi)+x^4-8*x^3+16*x^
2),x, algorithm="giac")

[Out]

(5*I*x - I*e^5)/(pi*x - I*x^2 + I*x*e^(x^2) - 2*I*x*log(5) + 4*I*x)

________________________________________________________________________________________

maple [A]  time = 0.16, size = 30, normalized size = 1.00




method result size



risch e55xx(2ln(5)+iπ4ex2+x) 30



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((2*x^2+1)*exp(5)-10*x^3)*exp(x^2)-exp(5)*(2*ln(5)+I*Pi)+(4-2*x)*exp(5)+5*x^2)/(x^2*exp(x^2)^2+(-2*x^2*(2
*ln(5)+I*Pi)-2*x^3+8*x^2)*exp(x^2)+x^2*(2*ln(5)+I*Pi)^2+(2*x^3-8*x^2)*(2*ln(5)+I*Pi)+x^4-8*x^3+16*x^2),x,metho
d=_RETURNVERBOSE)

[Out]

(exp(5)-5*x)/x/(2*ln(5)+I*Pi-4-exp(x^2)+x)

________________________________________________________________________________________

maxima [A]  time = 2.11, size = 34, normalized size = 1.13 5xe5(iπ2log(5)+4)xx2+xe(x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^2+1)*exp(5)-10*x^3)*exp(x^2)-exp(5)*(2*log(5)+I*pi)+(4-2*x)*exp(5)+5*x^2)/(x^2*exp(x^2)^2+(-2
*x^2*(2*log(5)+I*pi)-2*x^3+8*x^2)*exp(x^2)+x^2*(2*log(5)+I*pi)^2+(2*x^3-8*x^2)*(2*log(5)+I*pi)+x^4-8*x^3+16*x^
2),x, algorithm="maxima")

[Out]

(5*x - e^5)/((-I*pi - 2*log(5) + 4)*x - x^2 + x*e^(x^2))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 ex2(e5(2x2+1)10x3)e5(2ln(5)+Π1i)+5x2e5(2x4)x2e2x2+x2(2ln(5)+Π1i)2ex2(2x2(2ln(5)+Π1i)8x2+2x3)(8x22x3)(2ln(5)+Π1i)+16x28x3+x4dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x^2)*(exp(5)*(2*x^2 + 1) - 10*x^3) - exp(5)*(Pi*1i + 2*log(5)) + 5*x^2 - exp(5)*(2*x - 4))/(x^2*(Pi*1
i + 2*log(5))^2 - (8*x^2 - 2*x^3)*(Pi*1i + 2*log(5)) - exp(x^2)*(2*x^2*(Pi*1i + 2*log(5)) - 8*x^2 + 2*x^3) + x
^2*exp(2*x^2) + 16*x^2 - 8*x^3 + x^4),x)

[Out]

int((exp(x^2)*(exp(5)*(2*x^2 + 1) - 10*x^3) - exp(5)*(Pi*1i + 2*log(5)) + 5*x^2 - exp(5)*(2*x - 4))/(x^2*(Pi*1
i + 2*log(5))^2 - (8*x^2 - 2*x^3)*(Pi*1i + 2*log(5)) - exp(x^2)*(2*x^2*(Pi*1i + 2*log(5)) - 8*x^2 + 2*x^3) + x
^2*exp(2*x^2) + 16*x^2 - 8*x^3 + x^4), x)

________________________________________________________________________________________

sympy [A]  time = 21.92, size = 31, normalized size = 1.03 5x+e5x2xex24x+2xlog(5)+iπx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x**2+1)*exp(5)-10*x**3)*exp(x**2)-exp(5)*(2*ln(5)+I*pi)+(4-2*x)*exp(5)+5*x**2)/(x**2*exp(x**2)*
*2+(-2*x**2*(2*ln(5)+I*pi)-2*x**3+8*x**2)*exp(x**2)+x**2*(2*ln(5)+I*pi)**2+(2*x**3-8*x**2)*(2*ln(5)+I*pi)+x**4
-8*x**3+16*x**2),x)

[Out]

(-5*x + exp(5))/(x**2 - x*exp(x**2) - 4*x + 2*x*log(5) + I*pi*x)

________________________________________________________________________________________