Optimal. Leaf size=30 \[ \frac {e^5-5 x}{x \left (-4-e^{x^2}+i \pi +x+\log (25)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^5 (4-2 x)+5 x^2+e^{x^2} \left (-10 x^3+e^5 \left (1+2 x^2\right )\right )-e^5 (i \pi +\log (25))}{16 x^2+e^{2 x^2} x^2-8 x^3+x^4+\left (-8 x^2+2 x^3\right ) (i \pi +\log (25))+x^2 (i \pi +\log (25))^2+e^{x^2} \left (8 x^2-2 x^3-2 x^2 (i \pi +\log (25))\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^5 (4-2 x)+5 x^2+e^{x^2} \left (-10 x^3+e^5 \left (1+2 x^2\right )\right )-e^5 (i \pi +\log (25))}{e^{2 x^2} x^2-8 x^3+x^4+\left (-8 x^2+2 x^3\right ) (i \pi +\log (25))+e^{x^2} \left (8 x^2-2 x^3-2 x^2 (i \pi +\log (25))\right )+x^2 \left (16+(i \pi +\log (25))^2\right )} \, dx\\ &=\int \frac {5 x^2-10 e^{x^2} x^3+e^{5+x^2} \left (1+2 x^2\right )+e^5 (4-i \pi -2 x-\log (25))}{x^2 \left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )^2} \, dx\\ &=\int \left (\frac {e^5+2 e^5 x^2-10 x^3}{x^2 \left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )}+\frac {\left (e^5-5 x\right ) \left (-1+2 x^2-x (8-2 i \pi -\log (625))\right )}{x \left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )^2}\right ) \, dx\\ &=\int \frac {e^5+2 e^5 x^2-10 x^3}{x^2 \left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )} \, dx+\int \frac {\left (e^5-5 x\right ) \left (-1+2 x^2-x (8-2 i \pi -\log (625))\right )}{x \left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )^2} \, dx\\ &=\int \left (\frac {10 x}{-e^{x^2}+x-4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )}+\frac {2 e^5}{e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )}+\frac {e^5}{x^2 \left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )}\right ) \, dx+\int \left (-\frac {e^5}{x \left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )^2}-\frac {10 x^2}{\left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )^2}-\frac {2 i e^5 \pi \left (1-\frac {i \left (5+4 e^5 (-2+\log (5))\right )}{2 e^5 \pi }\right )}{\left (i e^{x^2}-i x+4 i \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )^2}+\frac {x \left (40+2 e^5-10 i \pi -5 \log (625)\right )}{\left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )^2}\right ) \, dx\\ &=10 \int \frac {x}{-e^{x^2}+x-4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )} \, dx-10 \int \frac {x^2}{\left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )^2} \, dx-e^5 \int \frac {1}{x \left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )^2} \, dx+e^5 \int \frac {1}{x^2 \left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )} \, dx+\left (2 e^5\right ) \int \frac {1}{e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )} \, dx-\left (5-e^5 (8-2 i \pi -\log (625))\right ) \int \frac {1}{\left (i e^{x^2}-i x+4 i \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )^2} \, dx+\left (40+2 e^5-10 i \pi -5 \log (625)\right ) \int \frac {x}{\left (e^{x^2}-x+4 \left (1-\frac {1}{4} i (\pi -2 i \log (5))\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.83, size = 30, normalized size = 1.00 \begin {gather*} \frac {e^5-5 x}{x \left (-4-e^{x^2}+i \pi +x+\log (25)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 35, normalized size = 1.17 \begin {gather*} \frac {5 \, x - e^{5}}{{\left (-i \, \pi + 4\right )} x - x^{2} + x e^{\left (x^{2}\right )} - 2 \, x \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 35, normalized size = 1.17 \begin {gather*} \frac {5 i \, x - i \, e^{5}}{\pi x - i \, x^{2} + i \, x e^{\left (x^{2}\right )} - 2 i \, x \log \relax (5) + 4 i \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 30, normalized size = 1.00
method | result | size |
risch | \(\frac {{\mathrm e}^{5}-5 x}{x \left (2 \ln \relax (5)+i \pi -4-{\mathrm e}^{x^{2}}+x \right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 2.11, size = 34, normalized size = 1.13 \begin {gather*} \frac {5 \, x - e^{5}}{{\left (-i \, \pi - 2 \, \log \relax (5) + 4\right )} x - x^{2} + x e^{\left (x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{x^2}\,\left ({\mathrm {e}}^5\,\left (2\,x^2+1\right )-10\,x^3\right )-{\mathrm {e}}^5\,\left (2\,\ln \relax (5)+\Pi \,1{}\mathrm {i}\right )+5\,x^2-{\mathrm {e}}^5\,\left (2\,x-4\right )}{x^2\,{\mathrm {e}}^{2\,x^2}+x^2\,{\left (2\,\ln \relax (5)+\Pi \,1{}\mathrm {i}\right )}^2-{\mathrm {e}}^{x^2}\,\left (2\,x^2\,\left (2\,\ln \relax (5)+\Pi \,1{}\mathrm {i}\right )-8\,x^2+2\,x^3\right )-\left (8\,x^2-2\,x^3\right )\,\left (2\,\ln \relax (5)+\Pi \,1{}\mathrm {i}\right )+16\,x^2-8\,x^3+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 21.92, size = 31, normalized size = 1.03 \begin {gather*} \frac {- 5 x + e^{5}}{x^{2} - x e^{x^{2}} - 4 x + 2 x \log {\relax (5 )} + i \pi x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________