3.85.24 1+10x380x2+93x32944x41280x5xdx

Optimal. Leaf size=24 x+(3+x)(x(2+x16x2)2)+log(x)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 26, normalized size of antiderivative = 1.08, number of steps used = 2, number of rules used = 1, integrand size = 29, number of rulesintegrand size = 0.034, Rules used = {14} 256x5736x4+31x3190x2+10x+log(x)

Antiderivative was successfully verified.

[In]

Int[(1 + 10*x - 380*x^2 + 93*x^3 - 2944*x^4 - 1280*x^5)/x,x]

[Out]

10*x - 190*x^2 + 31*x^3 - 736*x^4 - 256*x^5 + Log[x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

integral=(10+1x380x+93x22944x31280x4)dx=10x190x2+31x3736x4256x5+log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 26, normalized size = 1.08 10x190x2+31x3736x4256x5+log(x)

Antiderivative was successfully verified.

[In]

Integrate[(1 + 10*x - 380*x^2 + 93*x^3 - 2944*x^4 - 1280*x^5)/x,x]

[Out]

10*x - 190*x^2 + 31*x^3 - 736*x^4 - 256*x^5 + Log[x]

________________________________________________________________________________________

fricas [A]  time = 1.05, size = 26, normalized size = 1.08 256x5736x4+31x3190x2+10x+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1280*x^5-2944*x^4+93*x^3-380*x^2+10*x+1)/x,x, algorithm="fricas")

[Out]

-256*x^5 - 736*x^4 + 31*x^3 - 190*x^2 + 10*x + log(x)

________________________________________________________________________________________

giac [A]  time = 0.11, size = 27, normalized size = 1.12 256x5736x4+31x3190x2+10x+log(|x|)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1280*x^5-2944*x^4+93*x^3-380*x^2+10*x+1)/x,x, algorithm="giac")

[Out]

-256*x^5 - 736*x^4 + 31*x^3 - 190*x^2 + 10*x + log(abs(x))

________________________________________________________________________________________

maple [A]  time = 0.02, size = 27, normalized size = 1.12




method result size



default 256x5736x4+31x3190x2+10x+ln(x) 27
norman 256x5736x4+31x3190x2+10x+ln(x) 27
risch 256x5736x4+31x3190x2+10x+ln(x) 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-1280*x^5-2944*x^4+93*x^3-380*x^2+10*x+1)/x,x,method=_RETURNVERBOSE)

[Out]

-256*x^5-736*x^4+31*x^3-190*x^2+10*x+ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.59, size = 26, normalized size = 1.08 256x5736x4+31x3190x2+10x+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1280*x^5-2944*x^4+93*x^3-380*x^2+10*x+1)/x,x, algorithm="maxima")

[Out]

-256*x^5 - 736*x^4 + 31*x^3 - 190*x^2 + 10*x + log(x)

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 26, normalized size = 1.08 10x+ln(x)190x2+31x3736x4256x5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((10*x - 380*x^2 + 93*x^3 - 2944*x^4 - 1280*x^5 + 1)/x,x)

[Out]

10*x + log(x) - 190*x^2 + 31*x^3 - 736*x^4 - 256*x^5

________________________________________________________________________________________

sympy [A]  time = 0.08, size = 26, normalized size = 1.08 256x5736x4+31x3190x2+10x+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1280*x**5-2944*x**4+93*x**3-380*x**2+10*x+1)/x,x)

[Out]

-256*x**5 - 736*x**4 + 31*x**3 - 190*x**2 + 10*x + log(x)

________________________________________________________________________________________