3.85.25 4e2+e(1616x)+28x+16x2+(4e28ex)log(x)18x+e2x+14x2+4x3+e(8x4x2)+(2e2x+e(8x4x2))log(x)+e2xlog2(x)dx

Optimal. Leaf size=24 log((2+2x(4+2xe(1+log(x)))2)2)

________________________________________________________________________________________

Rubi [F]  time = 1.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 4e2+e(1616x)+28x+16x2+(4e28ex)log(x)18x+e2x+14x2+4x3+e(8x4x2)+(2e2x+e(8x4x2))log(x)+e2xlog2(x)dx

Verification is not applicable to the result.

[In]

Int[(4*E^2 + E*(-16 - 16*x) + 28*x + 16*x^2 + (4*E^2 - 8*E*x)*Log[x])/(18*x + E^2*x + 14*x^2 + 4*x^3 + E*(-8*x
 - 4*x^2) + (2*E^2*x + E*(-8*x - 4*x^2))*Log[x] + E^2*x*Log[x]^2),x]

[Out]

-4*(7 - 4*E)*Defer[Int][(-18*(1 + ((-8 + E)*E)/18) - 14*(1 - (2*E)/7)*x - 4*x^2 + 8*(1 - E/4)*E*Log[x] + 4*E*x
*Log[x] - E^2*Log[x]^2)^(-1), x] + 4*(4 - E)*E*Defer[Int][1/(x*(-18*(1 + ((-8 + E)*E)/18) - 14*(1 - (2*E)/7)*x
 - 4*x^2 + 8*(1 - E/4)*E*Log[x] + 4*E*x*Log[x] - E^2*Log[x]^2)), x] + 8*E*Defer[Int][Log[x]/(-18*(1 + ((-8 + E
)*E)/18) - 14*(1 - (2*E)/7)*x - 4*x^2 + 8*(1 - E/4)*E*Log[x] + 4*E*x*Log[x] - E^2*Log[x]^2), x] + 16*Defer[Int
][x/(18*(1 + ((-8 + E)*E)/18) + 14*(1 - (2*E)/7)*x + 4*x^2 - 8*(1 - E/4)*E*Log[x] - 4*E*x*Log[x] + E^2*Log[x]^
2), x] + 4*E^2*Defer[Int][Log[x]/(x*(18*(1 + ((-8 + E)*E)/18) + 14*(1 - (2*E)/7)*x + 4*x^2 - 8*(1 - E/4)*E*Log
[x] - 4*E*x*Log[x] + E^2*Log[x]^2)), x]

Rubi steps

integral=4e2+e(1616x)+28x+16x2+(4e28ex)log(x)(18+e2)x+14x2+4x3+e(8x4x2)+(2e2x+e(8x4x2))log(x)+e2xlog2(x)dx=4(4(1e4)e+7(14e7)x+4x2+e2log(x)2exlog(x))(18+e2)x+14x2+4x3+e(8x4x2)+(2e2x+e(8x4x2))log(x)+e2xlog2(x)dx=44(1e4)e+7(14e7)x+4x2+e2log(x)2exlog(x)(18+e2)x+14x2+4x3+e(8x4x2)+(2e2x+e(8x4x2))log(x)+e2xlog2(x)dx=4e24e(1+x)+x(7+4x)+e(e2x)log(x)x(e24e(2+x)+2(9+7x+2x2)+2e(e2(2+x))log(x)+e2log2(x))dx=4(4(174e)e18(1+118(8+e)e)14(12e7)x4x2+8(1e4)elog(x)+4exlog(x)e2log2(x)+4(1e4)ex(18(1+118(8+e)e)14(12e7)x4x2+8(1e4)elog(x)+4exlog(x)e2log2(x))+2elog(x)18(1+118(8+e)e)14(12e7)x4x2+8(1e4)elog(x)+4exlog(x)e2log2(x)+4x18(1+118(8+e)e)+14(12e7)x+4x28(1e4)elog(x)4exlog(x)+e2log2(x)+e2log(x)x(18(1+118(8+e)e)+14(12e7)x+4x28(1e4)elog(x)4exlog(x)+e2log2(x)))dx=16x18(1+118(8+e)e)+14(12e7)x+4x28(1e4)elog(x)4exlog(x)+e2log2(x)dx(4(74e))118(1+118(8+e)e)14(12e7)x4x2+8(1e4)elog(x)+4exlog(x)e2log2(x)dx+(8e)log(x)18(1+118(8+e)e)14(12e7)x4x2+8(1e4)elog(x)+4exlog(x)e2log2(x)dx+(4(4e)e)1x(18(1+118(8+e)e)14(12e7)x4x2+8(1e4)elog(x)+4exlog(x)e2log2(x))dx+(4e2)log(x)x(18(1+118(8+e)e)+14(12e7)x+4x28(1e4)elog(x)4exlog(x)+e2log2(x))dx

________________________________________________________________________________________

Mathematica [B]  time = 1.47, size = 49, normalized size = 2.04 2log(188e+e2+14x4ex+4x28elog(x)+2e2log(x)4exlog(x)+e2log2(x))

Antiderivative was successfully verified.

[In]

Integrate[(4*E^2 + E*(-16 - 16*x) + 28*x + 16*x^2 + (4*E^2 - 8*E*x)*Log[x])/(18*x + E^2*x + 14*x^2 + 4*x^3 + E
*(-8*x - 4*x^2) + (2*E^2*x + E*(-8*x - 4*x^2))*Log[x] + E^2*x*Log[x]^2),x]

[Out]

2*Log[18 - 8*E + E^2 + 14*x - 4*E*x + 4*x^2 - 8*E*Log[x] + 2*E^2*Log[x] - 4*E*x*Log[x] + E^2*Log[x]^2]

________________________________________________________________________________________

fricas [B]  time = 0.65, size = 45, normalized size = 1.88 2log(e2log(x)2+4x24(x+2)e2(2(x+2)ee2)log(x)+14x+e2+18)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*exp(1)^2-8*x*exp(1))*log(x)+4*exp(1)^2+(-16*x-16)*exp(1)+16*x^2+28*x)/(x*exp(1)^2*log(x)^2+(2*x*
exp(1)^2+(-4*x^2-8*x)*exp(1))*log(x)+x*exp(1)^2+(-4*x^2-8*x)*exp(1)+4*x^3+14*x^2+18*x),x, algorithm="fricas")

[Out]

2*log(e^2*log(x)^2 + 4*x^2 - 4*(x + 2)*e - 2*(2*(x + 2)*e - e^2)*log(x) + 14*x + e^2 + 18)

________________________________________________________________________________________

giac [B]  time = 0.23, size = 50, normalized size = 2.08 2log(4xelog(x)+e2log(x)2+4x24xe+2e2log(x)8elog(x)+14x+e28e+18)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*exp(1)^2-8*x*exp(1))*log(x)+4*exp(1)^2+(-16*x-16)*exp(1)+16*x^2+28*x)/(x*exp(1)^2*log(x)^2+(2*x*
exp(1)^2+(-4*x^2-8*x)*exp(1))*log(x)+x*exp(1)^2+(-4*x^2-8*x)*exp(1)+4*x^3+14*x^2+18*x),x, algorithm="giac")

[Out]

2*log(-4*x*e*log(x) + e^2*log(x)^2 + 4*x^2 - 4*x*e + 2*e^2*log(x) - 8*e*log(x) + 14*x + e^2 - 8*e + 18)

________________________________________________________________________________________

maple [A]  time = 0.09, size = 46, normalized size = 1.92




method result size



risch 2ln(ln(x)2+2e1(e2x4)ln(x)+(e24xe+4x28e+14x+18)e2) 46
norman 2ln(e2ln(x)2+2e2ln(x)4xeln(x)8eln(x)+e24xe+4x28e+14x+18) 57



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*exp(1)^2-8*x*exp(1))*ln(x)+4*exp(1)^2+(-16*x-16)*exp(1)+16*x^2+28*x)/(x*exp(1)^2*ln(x)^2+(2*x*exp(1)^2
+(-4*x^2-8*x)*exp(1))*ln(x)+x*exp(1)^2+(-4*x^2-8*x)*exp(1)+4*x^3+14*x^2+18*x),x,method=_RETURNVERBOSE)

[Out]

2*ln(ln(x)^2+2*exp(-1)*(exp(1)-2*x-4)*ln(x)+(exp(2)-4*x*exp(1)+4*x^2-8*exp(1)+14*x+18)*exp(-2))

________________________________________________________________________________________

maxima [B]  time = 0.84, size = 53, normalized size = 2.21 2log((e2log(x)2+4x22x(2e7)2(2xee2+4e)log(x)+e28e+18)e(2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*exp(1)^2-8*x*exp(1))*log(x)+4*exp(1)^2+(-16*x-16)*exp(1)+16*x^2+28*x)/(x*exp(1)^2*log(x)^2+(2*x*
exp(1)^2+(-4*x^2-8*x)*exp(1))*log(x)+x*exp(1)^2+(-4*x^2-8*x)*exp(1)+4*x^3+14*x^2+18*x),x, algorithm="maxima")

[Out]

2*log((e^2*log(x)^2 + 4*x^2 - 2*x*(2*e - 7) - 2*(2*x*e - e^2 + 4*e)*log(x) + e^2 - 8*e + 18)*e^(-2))

________________________________________________________________________________________

mupad [B]  time = 5.67, size = 50, normalized size = 2.08 2ln(14x8e+e2+e2ln(x)24xe8eln(x)+2e2ln(x)+4x24xeln(x)+18)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((28*x + 4*exp(2) + log(x)*(4*exp(2) - 8*x*exp(1)) + 16*x^2 - exp(1)*(16*x + 16))/(18*x - log(x)*(exp(1)*(8
*x + 4*x^2) - 2*x*exp(2)) - exp(1)*(8*x + 4*x^2) + x*exp(2) + 14*x^2 + 4*x^3 + x*exp(2)*log(x)^2),x)

[Out]

2*log(14*x - 8*exp(1) + exp(2) + exp(2)*log(x)^2 - 4*x*exp(1) - 8*exp(1)*log(x) + 2*exp(2)*log(x) + 4*x^2 - 4*
x*exp(1)*log(x) + 18)

________________________________________________________________________________________

sympy [B]  time = 0.31, size = 53, normalized size = 2.21 2log((4x8+2e)log(x)e+4x24ex+14x8e+e2+18e2+log(x)2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*exp(1)**2-8*x*exp(1))*ln(x)+4*exp(1)**2+(-16*x-16)*exp(1)+16*x**2+28*x)/(x*exp(1)**2*ln(x)**2+(2
*x*exp(1)**2+(-4*x**2-8*x)*exp(1))*ln(x)+x*exp(1)**2+(-4*x**2-8*x)*exp(1)+4*x**3+14*x**2+18*x),x)

[Out]

2*log((-4*x - 8 + 2*E)*exp(-1)*log(x) + (4*x**2 - 4*E*x + 14*x - 8*E + exp(2) + 18)*exp(-2) + log(x)**2)

________________________________________________________________________________________