Optimal. Leaf size=37 \[ -4+5 \left (-x+\frac {(1+2 x)^2 \log ^2(4)}{16 \left (-1+e^{e^3}+\frac {4}{x}\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.58, antiderivative size = 177, normalized size of antiderivative = 4.78, number of steps used = 4, number of rules used = 2, integrand size = 175, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.011, Rules used = {6, 2074} \begin {gather*} \frac {5 x^2 \log ^2(4)}{4 \left (1-e^{e^3}\right )^2}-\frac {5 x \left (4+12 e^{2 e^3}-4 e^{3 e^3}-9 \log ^2(4)-e^{e^3} \left (12-\log ^2(4)\right )\right )}{4 \left (1-e^{e^3}\right )^3}-\frac {5 \left (9-e^{e^3}\right ) \left (17-e^{e^3}\right ) \log ^2(4)}{2 \left (1-e^{e^3}\right )^4 \left (4-\left (1-e^{e^3}\right ) x\right )}+\frac {5 \left (9-e^{e^3}\right )^2 \log ^2(4)}{\left (1-e^{e^3}\right )^4 \left (4-\left (1-e^{e^3}\right ) x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1280+960 x-240 x^2+20 x^3-20 e^{3 e^3} x^3+e^{2 e^3} \left (-240 x^2+60 x^3\right )+\left (10 x+60 x^2+75 x^3-10 x^4\right ) \log ^2(4)+e^{e^3} \left (-960 x+480 x^2-60 x^3+\left (5 x^3+10 x^4\right ) \log ^2(4)\right )}{256-192 x+48 x^2+\left (-4+4 e^{3 e^3}\right ) x^3+e^{2 e^3} \left (48 x^2-12 x^3\right )+e^{e^3} \left (192 x-96 x^2+12 x^3\right )} \, dx\\ &=\int \frac {-1280+960 x-240 x^2+\left (20-20 e^{3 e^3}\right ) x^3+e^{2 e^3} \left (-240 x^2+60 x^3\right )+\left (10 x+60 x^2+75 x^3-10 x^4\right ) \log ^2(4)+e^{e^3} \left (-960 x+480 x^2-60 x^3+\left (5 x^3+10 x^4\right ) \log ^2(4)\right )}{256-192 x+48 x^2+\left (-4+4 e^{3 e^3}\right ) x^3+e^{2 e^3} \left (48 x^2-12 x^3\right )+e^{e^3} \left (192 x-96 x^2+12 x^3\right )} \, dx\\ &=\int \left (\frac {5 x \log ^2(4)}{2 \left (-1+e^{e^3}\right )^2}+\frac {10 \left (9-e^{e^3}\right )^2 \log ^2(4)}{\left (1-e^{e^3}\right )^3 \left (4-\left (1-e^{e^3}\right ) x\right )^3}+\frac {5 \left (9-e^{e^3}\right ) \left (-17+e^{e^3}\right ) \log ^2(4)}{2 \left (1-e^{e^3}\right )^3 \left (4-\left (1-e^{e^3}\right ) x\right )^2}+\frac {15 e^{e^3} \left (1+\frac {e^{-e^3} \left (4-4 e^{3 e^3}-9 \log ^2(4)+e^{e^3} \log ^2(4)\right )}{12 \left (-1+e^{e^3}\right )}\right )}{\left (-1+e^{e^3}\right )^2}\right ) \, dx\\ &=\frac {5 x^2 \log ^2(4)}{4 \left (1-e^{e^3}\right )^2}+\frac {5 \left (9-e^{e^3}\right )^2 \log ^2(4)}{\left (1-e^{e^3}\right )^4 \left (4-\left (1-e^{e^3}\right ) x\right )^2}-\frac {5 \left (9-e^{e^3}\right ) \left (17-e^{e^3}\right ) \log ^2(4)}{2 \left (1-e^{e^3}\right )^4 \left (4-\left (1-e^{e^3}\right ) x\right )}-\frac {5 x \left (4+12 e^{2 e^3}-4 e^{3 e^3}-9 \log ^2(4)-e^{e^3} \left (12-\log ^2(4)\right )\right )}{4 \left (1-e^{e^3}\right )^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.22, size = 131, normalized size = 3.54 \begin {gather*} \frac {5 \left (\left (-1+e^{e^3}\right )^2 x^2 \log ^2(4)-\frac {2 \left (-9+e^{e^3}\right ) \left (-50+e^{e^3} (2-18 x)+17 x+e^{2 e^3} x\right ) \log ^2(4)}{\left (4+\left (-1+e^{e^3}\right ) x\right )^2}-\left (-1+e^{e^3}\right ) x \left (-4-12 e^{2 e^3}+4 e^{3 e^3}+9 \log ^2(4)-e^{e^3} \left (-12+\log ^2(4)\right )\right )\right )}{4 \left (-1+e^{e^3}\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 330, normalized size = 8.92 \begin {gather*} -\frac {5 \, {\left (x^{3} e^{\left (6 \, e^{3}\right )} + x^{3} - {\left (x^{4} + x^{3} - 56 \, x^{2} + 450 \, x - 900\right )} \log \relax (2)^{2} - 8 \, x^{2} - 2 \, {\left (3 \, x^{3} - 4 \, x^{2}\right )} e^{\left (5 \, e^{3}\right )} + {\left (15 \, x^{3} - {\left (x^{4} + x^{3}\right )} \log \relax (2)^{2} - 40 \, x^{2} + 16 \, x\right )} e^{\left (4 \, e^{3}\right )} - 2 \, {\left (10 \, x^{3} - {\left (2 \, x^{4} + 2 \, x^{3} - 4 \, x^{2} + x\right )} \log \relax (2)^{2} - 40 \, x^{2} + 32 \, x\right )} e^{\left (3 \, e^{3}\right )} + {\left (15 \, x^{3} - 2 \, {\left (3 \, x^{4} + 3 \, x^{3} - 36 \, x^{2} + 35 \, x - 2\right )} \log \relax (2)^{2} - 80 \, x^{2} + 96 \, x\right )} e^{\left (2 \, e^{3}\right )} - 2 \, {\left (3 \, x^{3} - {\left (2 \, x^{4} + 2 \, x^{3} - 60 \, x^{2} + 259 \, x - 68\right )} \log \relax (2)^{2} - 20 \, x^{2} + 32 \, x\right )} e^{\left (e^{3}\right )} + 16 \, x\right )}}{x^{2} e^{\left (6 \, e^{3}\right )} + x^{2} - 2 \, {\left (3 \, x^{2} - 4 \, x\right )} e^{\left (5 \, e^{3}\right )} + {\left (15 \, x^{2} - 40 \, x + 16\right )} e^{\left (4 \, e^{3}\right )} - 4 \, {\left (5 \, x^{2} - 20 \, x + 16\right )} e^{\left (3 \, e^{3}\right )} + {\left (15 \, x^{2} - 80 \, x + 96\right )} e^{\left (2 \, e^{3}\right )} - 2 \, {\left (3 \, x^{2} - 20 \, x + 32\right )} e^{\left (e^{3}\right )} - 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.73, size = 334, normalized size = 9.03 \begin {gather*} \frac {5 \, {\left (x^{2} e^{\left (4 \, e^{3}\right )} \log \relax (2)^{2} - 4 \, x^{2} e^{\left (3 \, e^{3}\right )} \log \relax (2)^{2} + 6 \, x^{2} e^{\left (2 \, e^{3}\right )} \log \relax (2)^{2} - 4 \, x^{2} e^{\left (e^{3}\right )} \log \relax (2)^{2} + x^{2} \log \relax (2)^{2} + x e^{\left (4 \, e^{3}\right )} \log \relax (2)^{2} - 12 \, x e^{\left (3 \, e^{3}\right )} \log \relax (2)^{2} + 30 \, x e^{\left (2 \, e^{3}\right )} \log \relax (2)^{2} - 28 \, x e^{\left (e^{3}\right )} \log \relax (2)^{2} + 9 \, x \log \relax (2)^{2} - x e^{\left (6 \, e^{3}\right )} + 6 \, x e^{\left (5 \, e^{3}\right )} - 15 \, x e^{\left (4 \, e^{3}\right )} + 20 \, x e^{\left (3 \, e^{3}\right )} - 15 \, x e^{\left (2 \, e^{3}\right )} + 6 \, x e^{\left (e^{3}\right )} - x\right )}}{e^{\left (6 \, e^{3}\right )} - 6 \, e^{\left (5 \, e^{3}\right )} + 15 \, e^{\left (4 \, e^{3}\right )} - 20 \, e^{\left (3 \, e^{3}\right )} + 15 \, e^{\left (2 \, e^{3}\right )} - 6 \, e^{\left (e^{3}\right )} + 1} - \frac {5 \, {\left (3.68889104300000 \times 10^{121} \, \log \left (x + 7.56902073509000 \times 10^{-9}\right ) + 3.12914073993000 \times 10^{121} \, \log \left (x + 7.56838262681000 \times 10^{-9}\right ) + 4.56113883361000 \times 10^{119} \, \log \left (x + 7.56596396813000 \times 10^{-9}\right )\right )}}{3 \, {\left (e^{\left (15 \, e^{3}\right )} - 15 \, e^{\left (14 \, e^{3}\right )} + 105 \, e^{\left (13 \, e^{3}\right )} - 455 \, e^{\left (12 \, e^{3}\right )} + 1365 \, e^{\left (11 \, e^{3}\right )} - 3003 \, e^{\left (10 \, e^{3}\right )} + 5005 \, e^{\left (9 \, e^{3}\right )} - 6435 \, e^{\left (8 \, e^{3}\right )} + 6435 \, e^{\left (7 \, e^{3}\right )} - 5005 \, e^{\left (6 \, e^{3}\right )} + 3003 \, e^{\left (5 \, e^{3}\right )} - 1365 \, e^{\left (4 \, e^{3}\right )} + 455 \, e^{\left (3 \, e^{3}\right )} - 105 \, e^{\left (2 \, e^{3}\right )} + 15 \, e^{\left (e^{3}\right )} - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.22, size = 68, normalized size = 1.84
method | result | size |
norman | \(\frac {-80 x +\left (-5 \,{\mathrm e}^{2 \,{\mathrm e}^{3}}+5 \ln \relax (2)^{2}+10 \,{\mathrm e}^{{\mathrm e}^{3}}-5\right ) x^{3}+\left (\frac {5 \ln \relax (2)^{2}}{4}-40 \,{\mathrm e}^{{\mathrm e}^{3}}+40\right ) x^{2}+5 x^{4} \ln \relax (2)^{2}}{\left (x \,{\mathrm e}^{{\mathrm e}^{3}}-x +4\right )^{2}}\) | \(68\) |
gosper | \(-\frac {5 x \left (-4 x^{3} \ln \relax (2)^{2}+4 \,{\mathrm e}^{2 \,{\mathrm e}^{3}} x^{2}-4 x^{2} \ln \relax (2)^{2}-8 x^{2} {\mathrm e}^{{\mathrm e}^{3}}-x \ln \relax (2)^{2}+32 x \,{\mathrm e}^{{\mathrm e}^{3}}+4 x^{2}-32 x +64\right )}{4 \left ({\mathrm e}^{2 \,{\mathrm e}^{3}} x^{2}-2 x^{2} {\mathrm e}^{{\mathrm e}^{3}}+8 x \,{\mathrm e}^{{\mathrm e}^{3}}+x^{2}-8 x +16\right )}\) | \(96\) |
risch | \(\frac {5 \,{\mathrm e}^{{\mathrm e}^{3}} \ln \relax (2)^{2} x^{2}}{\left ({\mathrm e}^{2 \,{\mathrm e}^{3}}-2 \,{\mathrm e}^{{\mathrm e}^{3}}+1\right ) \left ({\mathrm e}^{{\mathrm e}^{3}}-1\right )}+\frac {5 \,{\mathrm e}^{{\mathrm e}^{3}} \ln \relax (2)^{2} x}{\left ({\mathrm e}^{2 \,{\mathrm e}^{3}}-2 \,{\mathrm e}^{{\mathrm e}^{3}}+1\right ) \left ({\mathrm e}^{{\mathrm e}^{3}}-1\right )}-\frac {5 \ln \relax (2)^{2} x^{2}}{\left ({\mathrm e}^{2 \,{\mathrm e}^{3}}-2 \,{\mathrm e}^{{\mathrm e}^{3}}+1\right ) \left ({\mathrm e}^{{\mathrm e}^{3}}-1\right )}-\frac {45 \ln \relax (2)^{2} x}{\left ({\mathrm e}^{2 \,{\mathrm e}^{3}}-2 \,{\mathrm e}^{{\mathrm e}^{3}}+1\right ) \left ({\mathrm e}^{{\mathrm e}^{3}}-1\right )}-\frac {15 \,{\mathrm e}^{{\mathrm e}^{3}} x}{\left ({\mathrm e}^{2 \,{\mathrm e}^{3}}-2 \,{\mathrm e}^{{\mathrm e}^{3}}+1\right ) \left ({\mathrm e}^{{\mathrm e}^{3}}-1\right )}-\frac {5 x \,{\mathrm e}^{3 \,{\mathrm e}^{3}}}{\left ({\mathrm e}^{2 \,{\mathrm e}^{3}}-2 \,{\mathrm e}^{{\mathrm e}^{3}}+1\right ) \left ({\mathrm e}^{{\mathrm e}^{3}}-1\right )}+\frac {15 x \,{\mathrm e}^{2 \,{\mathrm e}^{3}}}{\left ({\mathrm e}^{2 \,{\mathrm e}^{3}}-2 \,{\mathrm e}^{{\mathrm e}^{3}}+1\right ) \left ({\mathrm e}^{{\mathrm e}^{3}}-1\right )}+\frac {5 x}{\left ({\mathrm e}^{2 \,{\mathrm e}^{3}}-2 \,{\mathrm e}^{{\mathrm e}^{3}}+1\right ) \left ({\mathrm e}^{{\mathrm e}^{3}}-1\right )}+\frac {\left (-10 \ln \relax (2)^{2} {\mathrm e}^{2 \,{\mathrm e}^{3}}+260 \,{\mathrm e}^{{\mathrm e}^{3}} \ln \relax (2)^{2}-1530 \ln \relax (2)^{2}\right ) x -\frac {20 \ln \relax (2)^{2} \left ({\mathrm e}^{2 \,{\mathrm e}^{3}}-34 \,{\mathrm e}^{{\mathrm e}^{3}}+225\right )}{{\mathrm e}^{{\mathrm e}^{3}}-1}}{\left ({\mathrm e}^{2 \,{\mathrm e}^{3}}-2 \,{\mathrm e}^{{\mathrm e}^{3}}+1\right ) \left ({\mathrm e}^{{\mathrm e}^{3}}-1\right ) \left ({\mathrm e}^{2 \,{\mathrm e}^{3}} x^{2}-2 x^{2} {\mathrm e}^{{\mathrm e}^{3}}+8 x \,{\mathrm e}^{{\mathrm e}^{3}}+x^{2}-8 x +16\right )}\) | \(343\) |
default | \(\frac {30 \ln \relax (2)^{2} {\mathrm e}^{2 \,{\mathrm e}^{3}} x^{2}+5 \,{\mathrm e}^{{\mathrm e}^{3}} \ln \relax (2)^{2} {\mathrm e}^{3 \,{\mathrm e}^{3}} x^{2}-15 \,{\mathrm e}^{{\mathrm e}^{3}} \ln \relax (2)^{2} {\mathrm e}^{2 \,{\mathrm e}^{3}} x^{2}+150 \ln \relax (2)^{2} {\mathrm e}^{2 \,{\mathrm e}^{3}} x +5 \,{\mathrm e}^{{\mathrm e}^{3}} \ln \relax (2)^{2} {\mathrm e}^{3 \,{\mathrm e}^{3}} x -135 \,{\mathrm e}^{{\mathrm e}^{3}} \ln \relax (2)^{2} {\mathrm e}^{2 \,{\mathrm e}^{3}} x -20 \,{\mathrm e}^{{\mathrm e}^{3}} \ln \relax (2)^{2} x^{2}-5 \ln \relax (2)^{2} {\mathrm e}^{3 \,{\mathrm e}^{3}} x^{2}-140 \,{\mathrm e}^{{\mathrm e}^{3}} \ln \relax (2)^{2} x +75 \ln \relax (2)^{2} {\mathrm e}^{3 \,{\mathrm e}^{3}} x +5 x^{2} \ln \relax (2)^{2}-75 x \,{\mathrm e}^{2 \,{\mathrm e}^{3}}-30 \,{\mathrm e}^{{\mathrm e}^{3}} {\mathrm e}^{3 \,{\mathrm e}^{3}} x +90 \,{\mathrm e}^{{\mathrm e}^{3}} {\mathrm e}^{2 \,{\mathrm e}^{3}} x +45 x \ln \relax (2)^{2}-5 x \,{\mathrm e}^{6 \,{\mathrm e}^{3}}+30 \,{\mathrm e}^{2 \,{\mathrm e}^{3}} {\mathrm e}^{3 \,{\mathrm e}^{3}} x -45 x \,{\mathrm e}^{4 \,{\mathrm e}^{3}}+30 x \,{\mathrm e}^{{\mathrm e}^{3}}+10 x \,{\mathrm e}^{3 \,{\mathrm e}^{3}}-5 x}{\left (3 \,{\mathrm e}^{{\mathrm e}^{3}}+{\mathrm e}^{3 \,{\mathrm e}^{3}}-3 \,{\mathrm e}^{2 \,{\mathrm e}^{3}}-1\right )^{2}}-\frac {10 \left (\munderset {\textit {\_R} =\RootOf \left (-64-\left (3 \,{\mathrm e}^{{\mathrm e}^{3}}+{\mathrm e}^{3 \,{\mathrm e}^{3}}-3 \,{\mathrm e}^{2 \,{\mathrm e}^{3}}-1\right ) \textit {\_Z}^{3}-\left (-24 \,{\mathrm e}^{{\mathrm e}^{3}}+12 \,{\mathrm e}^{2 \,{\mathrm e}^{3}}+12\right ) \textit {\_Z}^{2}-\left (48 \,{\mathrm e}^{{\mathrm e}^{3}}-48\right ) \textit {\_Z} \right )}{\sum }\frac {\left (638 \textit {\_R} \,{\mathrm e}^{{\mathrm e}^{3}}+30 \textit {\_R} \,{\mathrm e}^{5 \,{\mathrm e}^{3}}-263 \textit {\_R} \,{\mathrm e}^{4 \,{\mathrm e}^{3}}-\textit {\_R} \,{\mathrm e}^{6 \,{\mathrm e}^{3}}+772 \textit {\_R} \,{\mathrm e}^{3 \,{\mathrm e}^{3}}-1023 \textit {\_R} \,{\mathrm e}^{2 \,{\mathrm e}^{3}}-896 \,{\mathrm e}^{{\mathrm e}^{3}}+32 \,{\mathrm e}^{4 \,{\mathrm e}^{3}}-384 \,{\mathrm e}^{3 \,{\mathrm e}^{3}}+960 \,{\mathrm e}^{2 \,{\mathrm e}^{3}}-153 \textit {\_R} +288\right ) \ln \left (x -\textit {\_R} \right )}{-16+\textit {\_R}^{2} {\mathrm e}^{3 \,{\mathrm e}^{3}}-3 \,{\mathrm e}^{2 \,{\mathrm e}^{3}} \textit {\_R}^{2}+8 \textit {\_R} \,{\mathrm e}^{2 \,{\mathrm e}^{3}}+3 \textit {\_R}^{2} {\mathrm e}^{{\mathrm e}^{3}}-16 \textit {\_R} \,{\mathrm e}^{{\mathrm e}^{3}}-\textit {\_R}^{2}+16 \,{\mathrm e}^{{\mathrm e}^{3}}+8 \textit {\_R}}\right ) \ln \relax (2)^{2}}{3 \left (3 \,{\mathrm e}^{{\mathrm e}^{3}}+{\mathrm e}^{3 \,{\mathrm e}^{3}}-3 \,{\mathrm e}^{2 \,{\mathrm e}^{3}}-1\right )^{2}}\) | \(519\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 227, normalized size = 6.14 \begin {gather*} -\frac {10 \, {\left (x {\left (e^{\left (3 \, e^{3}\right )} - 27 \, e^{\left (2 \, e^{3}\right )} + 179 \, e^{\left (e^{3}\right )} - 153\right )} \log \relax (2)^{2} + 2 \, {\left (e^{\left (2 \, e^{3}\right )} - 34 \, e^{\left (e^{3}\right )} + 225\right )} \log \relax (2)^{2}\right )}}{x^{2} {\left (e^{\left (6 \, e^{3}\right )} - 6 \, e^{\left (5 \, e^{3}\right )} + 15 \, e^{\left (4 \, e^{3}\right )} - 20 \, e^{\left (3 \, e^{3}\right )} + 15 \, e^{\left (2 \, e^{3}\right )} - 6 \, e^{\left (e^{3}\right )} + 1\right )} + 8 \, x {\left (e^{\left (5 \, e^{3}\right )} - 5 \, e^{\left (4 \, e^{3}\right )} + 10 \, e^{\left (3 \, e^{3}\right )} - 10 \, e^{\left (2 \, e^{3}\right )} + 5 \, e^{\left (e^{3}\right )} - 1\right )} + 16 \, e^{\left (4 \, e^{3}\right )} - 64 \, e^{\left (3 \, e^{3}\right )} + 96 \, e^{\left (2 \, e^{3}\right )} - 64 \, e^{\left (e^{3}\right )} + 16} + \frac {5 \, {\left (x^{2} {\left (e^{\left (e^{3}\right )} - 1\right )} \log \relax (2)^{2} + {\left ({\left (e^{\left (e^{3}\right )} - 9\right )} \log \relax (2)^{2} - e^{\left (3 \, e^{3}\right )} + 3 \, e^{\left (2 \, e^{3}\right )} - 3 \, e^{\left (e^{3}\right )} + 1\right )} x\right )}}{e^{\left (3 \, e^{3}\right )} - 3 \, e^{\left (2 \, e^{3}\right )} + 3 \, e^{\left (e^{3}\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.02, size = 236, normalized size = 6.38 \begin {gather*} \frac {x\,\left (10\,{\mathrm {e}}^{2\,{\mathrm {e}}^3}\,{\ln \relax (2)}^2+1530\,{\ln \relax (2)}^2-260\,{\mathrm {e}}^{{\mathrm {e}}^3}\,{\ln \relax (2)}^2\right )+\frac {20\,\left ({\mathrm {e}}^{2\,{\mathrm {e}}^3}\,{\ln \relax (2)}^2+225\,{\ln \relax (2)}^2-34\,{\mathrm {e}}^{{\mathrm {e}}^3}\,{\ln \relax (2)}^2\right )}{{\mathrm {e}}^{{\mathrm {e}}^3}-1}}{\left (10\,{\mathrm {e}}^{2\,{\mathrm {e}}^3}-10\,{\mathrm {e}}^{3\,{\mathrm {e}}^3}+5\,{\mathrm {e}}^{4\,{\mathrm {e}}^3}-{\mathrm {e}}^{5\,{\mathrm {e}}^3}-5\,{\mathrm {e}}^{{\mathrm {e}}^3}+1\right )\,x^2+\left (32\,{\mathrm {e}}^{3\,{\mathrm {e}}^3}-48\,{\mathrm {e}}^{2\,{\mathrm {e}}^3}-8\,{\mathrm {e}}^{4\,{\mathrm {e}}^3}+32\,{\mathrm {e}}^{{\mathrm {e}}^3}-8\right )\,x+48\,{\mathrm {e}}^{2\,{\mathrm {e}}^3}-16\,{\mathrm {e}}^{3\,{\mathrm {e}}^3}-48\,{\mathrm {e}}^{{\mathrm {e}}^3}+16}+x\,\left (\frac {15\,{\mathrm {e}}^{2\,{\mathrm {e}}^3}-5\,{\mathrm {e}}^{3\,{\mathrm {e}}^3}-15\,{\mathrm {e}}^{{\mathrm {e}}^3}+75\,{\ln \relax (2)}^2+5\,{\mathrm {e}}^{{\mathrm {e}}^3}\,{\ln \relax (2)}^2+5}{{\left ({\mathrm {e}}^{{\mathrm {e}}^3}-1\right )}^3}-\frac {120\,{\ln \relax (2)}^2}{{\left ({\mathrm {e}}^{{\mathrm {e}}^3}-1\right )}^3}\right )+\frac {5\,x^2\,{\ln \relax (2)}^2}{{\left ({\mathrm {e}}^{{\mathrm {e}}^3}-1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.92, size = 423, normalized size = 11.43 \begin {gather*} \frac {5 x^{2} \log {\relax (2 )}^{2}}{- 2 e^{e^{3}} + 1 + e^{2 e^{3}}} - x \left (- \frac {15 e^{2 e^{3}}}{- 3 e^{2 e^{3}} - 1 + 3 e^{e^{3}} + e^{3 e^{3}}} - \frac {5 e^{e^{3}} \log {\relax (2 )}^{2}}{- 3 e^{2 e^{3}} - 1 + 3 e^{e^{3}} + e^{3 e^{3}}} - \frac {5}{- 3 e^{2 e^{3}} - 1 + 3 e^{e^{3}} + e^{3 e^{3}}} + \frac {45 \log {\relax (2 )}^{2}}{- 3 e^{2 e^{3}} - 1 + 3 e^{e^{3}} + e^{3 e^{3}}} + \frac {15 e^{e^{3}}}{- 3 e^{2 e^{3}} - 1 + 3 e^{e^{3}} + e^{3 e^{3}}} + \frac {5 e^{3 e^{3}}}{- 3 e^{2 e^{3}} - 1 + 3 e^{e^{3}} + e^{3 e^{3}}}\right ) - \frac {x \left (- 270 e^{2 e^{3}} \log {\relax (2 )}^{2} - 1530 \log {\relax (2 )}^{2} + 1790 e^{e^{3}} \log {\relax (2 )}^{2} + 10 e^{3 e^{3}} \log {\relax (2 )}^{2}\right ) - 680 e^{e^{3}} \log {\relax (2 )}^{2} + 4500 \log {\relax (2 )}^{2} + 20 e^{2 e^{3}} \log {\relax (2 )}^{2}}{x^{2} \left (- 6 e^{5 e^{3}} - 20 e^{3 e^{3}} - 6 e^{e^{3}} + 1 + 15 e^{2 e^{3}} + 15 e^{4 e^{3}} + e^{6 e^{3}}\right ) + x \left (- 40 e^{4 e^{3}} - 80 e^{2 e^{3}} - 8 + 40 e^{e^{3}} + 80 e^{3 e^{3}} + 8 e^{5 e^{3}}\right ) - 64 e^{3 e^{3}} - 64 e^{e^{3}} + 16 + 96 e^{2 e^{3}} + 16 e^{4 e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________