3.85.30 27+e13(942x+49x2)(42x2+98x3)3x2dx

Optimal. Leaf size=19 e13(37x)2+9x

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 37, number of rulesintegrand size = 0.081, Rules used = {12, 14, 2209} e13(37x)2+9x

Antiderivative was successfully verified.

[In]

Int[(-27 + E^((9 - 42*x + 49*x^2)/3)*(-42*x^2 + 98*x^3))/(3*x^2),x]

[Out]

E^((3 - 7*x)^2/3) + 9/x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rubi steps

integral=1327+e13(942x+49x2)(42x2+98x3)x2dx=13(27x2+14e13(37x)2(3+7x))dx=9x+143e13(37x)2(3+7x)dx=e13(37x)2+9x

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 19, normalized size = 1.00 e13(37x)2+9x

Antiderivative was successfully verified.

[In]

Integrate[(-27 + E^((9 - 42*x + 49*x^2)/3)*(-42*x^2 + 98*x^3))/(3*x^2),x]

[Out]

E^((3 - 7*x)^2/3) + 9/x

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 19, normalized size = 1.00 xe(493x214x+3)+9x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((98*x^3-42*x^2)*exp(49/3*x^2-14*x+3)-27)/x^2,x, algorithm="fricas")

[Out]

(x*e^(49/3*x^2 - 14*x + 3) + 9)/x

________________________________________________________________________________________

giac [A]  time = 0.14, size = 19, normalized size = 1.00 xe(493x214x+3)+9x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((98*x^3-42*x^2)*exp(49/3*x^2-14*x+3)-27)/x^2,x, algorithm="giac")

[Out]

(x*e^(49/3*x^2 - 14*x + 3) + 9)/x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 17, normalized size = 0.89




method result size



risch 9x+e(7x3)23 17
default 9x+e493x214x+3 18
norman 9+xe493x214x+3x 20



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3*((98*x^3-42*x^2)*exp(49/3*x^2-14*x+3)-27)/x^2,x,method=_RETURNVERBOSE)

[Out]

9/x+exp(1/3*(7*x-3)^2)

________________________________________________________________________________________

maxima [C]  time = 0.56, size = 92, normalized size = 4.84 i3πerf(73i3xi3)+133(3313π(7x3)(erf(13(7x3)2)1)(7x3)2+3e(13(7x3)2))+9x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((98*x^3-42*x^2)*exp(49/3*x^2-14*x+3)-27)/x^2,x, algorithm="maxima")

[Out]

I*sqrt(3)*sqrt(pi)*erf(7/3*I*sqrt(3)*x - I*sqrt(3)) + 1/3*sqrt(3)*(3*sqrt(3)*sqrt(1/3)*sqrt(pi)*(7*x - 3)*(erf
(sqrt(1/3)*sqrt(-(7*x - 3)^2)) - 1)/sqrt(-(7*x - 3)^2) + sqrt(3)*e^(1/3*(7*x - 3)^2)) + 9/x

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 17, normalized size = 0.89 e49x2314x+3+9x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((exp((49*x^2)/3 - 14*x + 3)*(42*x^2 - 98*x^3))/3 + 9)/x^2,x)

[Out]

exp((49*x^2)/3 - 14*x + 3) + 9/x

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 15, normalized size = 0.79 e49x2314x+3+9x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((98*x**3-42*x**2)*exp(49/3*x**2-14*x+3)-27)/x**2,x)

[Out]

exp(49*x**2/3 - 14*x + 3) + 9/x

________________________________________________________________________________________