Optimal. Leaf size=26 \[ \log \left (-4-e^{2 x-2 e^5 x}+\left (e^{4 x}+x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 13.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} \left (-2+2 e^5\right )+e^{2 e^5 x} \left (8 e^{8 x}+2 x+e^{4 x} (2+8 x)\right )}{-e^{2 x}+e^{2 e^5 x} \left (-4+e^{8 x}+2 e^{4 x} x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 \left (1+4 e^{4 x}\right ) \left (e^{4 x}+x\right )}{-4+e^{8 x}+2 e^{4 x} x+x^2}+\frac {2 e^{2 x} \left (e^{4 x}+4 \left (1-e^5\right )+3 e^{8 x} \left (1+\frac {e^5}{3}\right )+x+2 e^{4 x} \left (1+e^5\right ) x-\left (1-e^5\right ) x^2\right )}{\left (4-e^{8 x}-2 e^{4 x} x-x^2\right ) \left (e^{2 x}+4 e^{2 e^5 x}-e^{2 \left (4+e^5\right ) x}-2 e^{2 \left (2+e^5\right ) x} x-e^{2 e^5 x} x^2\right )}\right ) \, dx\\ &=2 \int \frac {\left (1+4 e^{4 x}\right ) \left (e^{4 x}+x\right )}{-4+e^{8 x}+2 e^{4 x} x+x^2} \, dx+2 \int \frac {e^{2 x} \left (e^{4 x}+4 \left (1-e^5\right )+3 e^{8 x} \left (1+\frac {e^5}{3}\right )+x+2 e^{4 x} \left (1+e^5\right ) x-\left (1-e^5\right ) x^2\right )}{\left (4-e^{8 x}-2 e^{4 x} x-x^2\right ) \left (e^{2 x}+4 e^{2 e^5 x}-e^{2 \left (4+e^5\right ) x}-2 e^{2 \left (2+e^5\right ) x} x-e^{2 e^5 x} x^2\right )} \, dx\\ &=\log \left (4-e^{8 x}-2 e^{4 x} x-x^2\right )+2 \int \left (-\frac {e^{6 x}}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (e^{2 x}+4 e^{2 e^5 x}-e^{2 \left (4+e^5\right ) x}-2 e^{2 \left (2+e^5\right ) x} x-e^{2 e^5 x} x^2\right )}+\frac {4 e^{2 x} \left (-1+e^5\right )}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (e^{2 x}+4 e^{2 e^5 x}-e^{2 \left (4+e^5\right ) x}-2 e^{2 \left (2+e^5\right ) x} x-e^{2 e^5 x} x^2\right )}-\frac {e^{10 x} \left (3+e^5\right )}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (e^{2 x}+4 e^{2 e^5 x}-e^{2 \left (4+e^5\right ) x}-2 e^{2 \left (2+e^5\right ) x} x-e^{2 e^5 x} x^2\right )}-\frac {2 e^{6 x} \left (1+e^5\right ) x}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (e^{2 x}+4 e^{2 e^5 x}-e^{2 \left (4+e^5\right ) x}-2 e^{2 \left (2+e^5\right ) x} x-e^{2 e^5 x} x^2\right )}+\frac {e^{2 x} x}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (-e^{2 x}-4 e^{2 e^5 x}+e^{2 \left (4+e^5\right ) x}+2 e^{2 \left (2+e^5\right ) x} x+e^{2 e^5 x} x^2\right )}+\frac {e^{2 x} \left (-1+e^5\right ) x^2}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (-e^{2 x}-4 e^{2 e^5 x}+e^{2 \left (4+e^5\right ) x}+2 e^{2 \left (2+e^5\right ) x} x+e^{2 e^5 x} x^2\right )}\right ) \, dx\\ &=\log \left (4-e^{8 x}-2 e^{4 x} x-x^2\right )-2 \int \frac {e^{6 x}}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (e^{2 x}+4 e^{2 e^5 x}-e^{2 \left (4+e^5\right ) x}-2 e^{2 \left (2+e^5\right ) x} x-e^{2 e^5 x} x^2\right )} \, dx+2 \int \frac {e^{2 x} x}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (-e^{2 x}-4 e^{2 e^5 x}+e^{2 \left (4+e^5\right ) x}+2 e^{2 \left (2+e^5\right ) x} x+e^{2 e^5 x} x^2\right )} \, dx-\left (2 \left (1-e^5\right )\right ) \int \frac {e^{2 x} x^2}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (-e^{2 x}-4 e^{2 e^5 x}+e^{2 \left (4+e^5\right ) x}+2 e^{2 \left (2+e^5\right ) x} x+e^{2 e^5 x} x^2\right )} \, dx-\left (8 \left (1-e^5\right )\right ) \int \frac {e^{2 x}}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (e^{2 x}+4 e^{2 e^5 x}-e^{2 \left (4+e^5\right ) x}-2 e^{2 \left (2+e^5\right ) x} x-e^{2 e^5 x} x^2\right )} \, dx-\left (4 \left (1+e^5\right )\right ) \int \frac {e^{6 x} x}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (e^{2 x}+4 e^{2 e^5 x}-e^{2 \left (4+e^5\right ) x}-2 e^{2 \left (2+e^5\right ) x} x-e^{2 e^5 x} x^2\right )} \, dx-\left (2 \left (3+e^5\right )\right ) \int \frac {e^{10 x}}{\left (-4+e^{8 x}+2 e^{4 x} x+x^2\right ) \left (e^{2 x}+4 e^{2 e^5 x}-e^{2 \left (4+e^5\right ) x}-2 e^{2 \left (2+e^5\right ) x} x-e^{2 e^5 x} x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 5.13, size = 65, normalized size = 2.50 \begin {gather*} -2 e^5 x+\log \left (-e^{2 x}-4 e^{2 e^5 x}+e^{8 x+2 e^5 x}+2 e^{4 x+2 e^5 x} x+e^{2 e^5 x} x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.91, size = 73, normalized size = 2.81 \begin {gather*} -2 \, x e^{5} + \log \left (x^{2} + 2 \, x e^{\left (4 \, x\right )} + e^{\left (8 \, x\right )} - 4\right ) + \log \left (\frac {{\left (x^{2} + 2 \, x e^{\left (4 \, x\right )} + e^{\left (8 \, x\right )} - 4\right )} e^{\left (2 \, x e^{5}\right )} - e^{\left (2 \, x\right )}}{x^{2} + 2 \, x e^{\left (4 \, x\right )} + e^{\left (8 \, x\right )} - 4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.42, size = 55, normalized size = 2.12 \begin {gather*} -2 \, x e^{5} + \log \left (x^{2} e^{\left (2 \, x e^{5}\right )} + 2 \, x e^{\left (2 \, x e^{5} + 4 \, x\right )} - 4 \, e^{\left (2 \, x e^{5}\right )} + e^{\left (2 \, x e^{5} + 8 \, x\right )} - e^{\left (2 \, x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 56, normalized size = 2.15
method | result | size |
risch | \(\ln \left ({\mathrm e}^{8 x}+2 x \,{\mathrm e}^{4 x}+x^{2}-4\right )-2 x \,{\mathrm e}^{5}+\ln \left ({\mathrm e}^{2 x \,{\mathrm e}^{5}}-\frac {{\mathrm e}^{2 x}}{{\mathrm e}^{8 x}+2 x \,{\mathrm e}^{4 x}+x^{2}-4}\right )\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 72, normalized size = 2.77 \begin {gather*} -2 \, x e^{5} + \log \left (x + e^{\left (4 \, x\right )} + 2\right ) + \log \left (x + e^{\left (4 \, x\right )} - 2\right ) + \log \left (\frac {{\left (x^{2} + 2 \, x e^{\left (4 \, x\right )} + e^{\left (8 \, x\right )} - 4\right )} e^{\left (2 \, x e^{5}\right )} - e^{\left (2 \, x\right )}}{x^{2} + 2 \, x e^{\left (4 \, x\right )} + e^{\left (8 \, x\right )} - 4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.58, size = 92, normalized size = 3.54 \begin {gather*} \ln \left (\frac {{\mathrm {e}}^{8\,x}\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^5}-4\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^5}-{\mathrm {e}}^{2\,x}+x^2\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^5}+2\,x\,{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^5}}{{\mathrm {e}}^{8\,x}+2\,x\,{\mathrm {e}}^{4\,x}+x^2-4}\right )+\ln \left ({\mathrm {e}}^{8\,x}+2\,x\,{\mathrm {e}}^{4\,x}+x^2-4\right )-2\,x\,{\mathrm {e}}^5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.89, size = 65, normalized size = 2.50 \begin {gather*} - 2 x e^{5} + \log {\left (x^{2} e^{2 x e^{5}} + 2 x e^{4 x} e^{2 x e^{5}} + e^{8 x} e^{2 x e^{5}} - e^{2 x} - 4 e^{2 x e^{5}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________