3.85.31 e2x(2+2e5)+e2e5x(8e8x+2x+e4x(2+8x))e2x+e2e5x(4+e8x+2e4xx+x2)dx

Optimal. Leaf size=26 log(4e2x2e5x+(e4x+x)2)

________________________________________________________________________________________

Rubi [F]  time = 13.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e2x(2+2e5)+e2e5x(8e8x+2x+e4x(2+8x))e2x+e2e5x(4+e8x+2e4xx+x2)dx

Verification is not applicable to the result.

[In]

Int[(E^(2*x)*(-2 + 2*E^5) + E^(2*E^5*x)*(8*E^(8*x) + 2*x + E^(4*x)*(2 + 8*x)))/(-E^(2*x) + E^(2*E^5*x)*(-4 + E
^(8*x) + 2*E^(4*x)*x + x^2)),x]

[Out]

Log[4 - E^(8*x) - 2*E^(4*x)*x - x^2] - 8*(1 - E^5)*Defer[Int][E^(2*x)/((-4 + E^(8*x) + 2*E^(4*x)*x + x^2)*(E^(
2*x) + 4*E^(2*E^5*x) - E^(2*(4 + E^5)*x) - 2*E^(2*(2 + E^5)*x)*x - E^(2*E^5*x)*x^2)), x] - 2*Defer[Int][E^(6*x
)/((-4 + E^(8*x) + 2*E^(4*x)*x + x^2)*(E^(2*x) + 4*E^(2*E^5*x) - E^(2*(4 + E^5)*x) - 2*E^(2*(2 + E^5)*x)*x - E
^(2*E^5*x)*x^2)), x] - 2*(3 + E^5)*Defer[Int][E^(10*x)/((-4 + E^(8*x) + 2*E^(4*x)*x + x^2)*(E^(2*x) + 4*E^(2*E
^5*x) - E^(2*(4 + E^5)*x) - 2*E^(2*(2 + E^5)*x)*x - E^(2*E^5*x)*x^2)), x] - 4*(1 + E^5)*Defer[Int][(E^(6*x)*x)
/((-4 + E^(8*x) + 2*E^(4*x)*x + x^2)*(E^(2*x) + 4*E^(2*E^5*x) - E^(2*(4 + E^5)*x) - 2*E^(2*(2 + E^5)*x)*x - E^
(2*E^5*x)*x^2)), x] + 2*Defer[Int][(E^(2*x)*x)/((-4 + E^(8*x) + 2*E^(4*x)*x + x^2)*(-E^(2*x) - 4*E^(2*E^5*x) +
 E^(2*(4 + E^5)*x) + 2*E^(2*(2 + E^5)*x)*x + E^(2*E^5*x)*x^2)), x] - 2*(1 - E^5)*Defer[Int][(E^(2*x)*x^2)/((-4
 + E^(8*x) + 2*E^(4*x)*x + x^2)*(-E^(2*x) - 4*E^(2*E^5*x) + E^(2*(4 + E^5)*x) + 2*E^(2*(2 + E^5)*x)*x + E^(2*E
^5*x)*x^2)), x]

Rubi steps

integral=(2(1+4e4x)(e4x+x)4+e8x+2e4xx+x2+2e2x(e4x+4(1e5)+3e8x(1+e53)+x+2e4x(1+e5)x(1e5)x2)(4e8x2e4xxx2)(e2x+4e2e5xe2(4+e5)x2e2(2+e5)xxe2e5xx2))dx=2(1+4e4x)(e4x+x)4+e8x+2e4xx+x2dx+2e2x(e4x+4(1e5)+3e8x(1+e53)+x+2e4x(1+e5)x(1e5)x2)(4e8x2e4xxx2)(e2x+4e2e5xe2(4+e5)x2e2(2+e5)xxe2e5xx2)dx=log(4e8x2e4xxx2)+2(e6x(4+e8x+2e4xx+x2)(e2x+4e2e5xe2(4+e5)x2e2(2+e5)xxe2e5xx2)+4e2x(1+e5)(4+e8x+2e4xx+x2)(e2x+4e2e5xe2(4+e5)x2e2(2+e5)xxe2e5xx2)e10x(3+e5)(4+e8x+2e4xx+x2)(e2x+4e2e5xe2(4+e5)x2e2(2+e5)xxe2e5xx2)2e6x(1+e5)x(4+e8x+2e4xx+x2)(e2x+4e2e5xe2(4+e5)x2e2(2+e5)xxe2e5xx2)+e2xx(4+e8x+2e4xx+x2)(e2x4e2e5x+e2(4+e5)x+2e2(2+e5)xx+e2e5xx2)+e2x(1+e5)x2(4+e8x+2e4xx+x2)(e2x4e2e5x+e2(4+e5)x+2e2(2+e5)xx+e2e5xx2))dx=log(4e8x2e4xxx2)2e6x(4+e8x+2e4xx+x2)(e2x+4e2e5xe2(4+e5)x2e2(2+e5)xxe2e5xx2)dx+2e2xx(4+e8x+2e4xx+x2)(e2x4e2e5x+e2(4+e5)x+2e2(2+e5)xx+e2e5xx2)dx(2(1e5))e2xx2(4+e8x+2e4xx+x2)(e2x4e2e5x+e2(4+e5)x+2e2(2+e5)xx+e2e5xx2)dx(8(1e5))e2x(4+e8x+2e4xx+x2)(e2x+4e2e5xe2(4+e5)x2e2(2+e5)xxe2e5xx2)dx(4(1+e5))e6xx(4+e8x+2e4xx+x2)(e2x+4e2e5xe2(4+e5)x2e2(2+e5)xxe2e5xx2)dx(2(3+e5))e10x(4+e8x+2e4xx+x2)(e2x+4e2e5xe2(4+e5)x2e2(2+e5)xxe2e5xx2)dx

________________________________________________________________________________________

Mathematica [B]  time = 5.13, size = 65, normalized size = 2.50 2e5x+log(e2x4e2e5x+e8x+2e5x+2e4x+2e5xx+e2e5xx2)

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*x)*(-2 + 2*E^5) + E^(2*E^5*x)*(8*E^(8*x) + 2*x + E^(4*x)*(2 + 8*x)))/(-E^(2*x) + E^(2*E^5*x)*(
-4 + E^(8*x) + 2*E^(4*x)*x + x^2)),x]

[Out]

-2*E^5*x + Log[-E^(2*x) - 4*E^(2*E^5*x) + E^(8*x + 2*E^5*x) + 2*E^(4*x + 2*E^5*x)*x + E^(2*E^5*x)*x^2]

________________________________________________________________________________________

fricas [B]  time = 1.91, size = 73, normalized size = 2.81 2xe5+log(x2+2xe(4x)+e(8x)4)+log((x2+2xe(4x)+e(8x)4)e(2xe5)e(2x)x2+2xe(4x)+e(8x)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*exp(4*x)^2+(8*x+2)*exp(4*x)+2*x)*exp(x*exp(5))^2+(2*exp(5)-2)*exp(x)^2)/((exp(4*x)^2+2*x*exp(4*x
)+x^2-4)*exp(x*exp(5))^2-exp(x)^2),x, algorithm="fricas")

[Out]

-2*x*e^5 + log(x^2 + 2*x*e^(4*x) + e^(8*x) - 4) + log(((x^2 + 2*x*e^(4*x) + e^(8*x) - 4)*e^(2*x*e^5) - e^(2*x)
)/(x^2 + 2*x*e^(4*x) + e^(8*x) - 4))

________________________________________________________________________________________

giac [B]  time = 0.42, size = 55, normalized size = 2.12 2xe5+log(x2e(2xe5)+2xe(2xe5+4x)4e(2xe5)+e(2xe5+8x)e(2x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*exp(4*x)^2+(8*x+2)*exp(4*x)+2*x)*exp(x*exp(5))^2+(2*exp(5)-2)*exp(x)^2)/((exp(4*x)^2+2*x*exp(4*x
)+x^2-4)*exp(x*exp(5))^2-exp(x)^2),x, algorithm="giac")

[Out]

-2*x*e^5 + log(x^2*e^(2*x*e^5) + 2*x*e^(2*x*e^5 + 4*x) - 4*e^(2*x*e^5) + e^(2*x*e^5 + 8*x) - e^(2*x))

________________________________________________________________________________________

maple [B]  time = 0.07, size = 56, normalized size = 2.15




method result size



risch ln(e8x+2xe4x+x24)2xe5+ln(e2xe5e2xe8x+2xe4x+x24) 56



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((8*exp(4*x)^2+(8*x+2)*exp(4*x)+2*x)*exp(x*exp(5))^2+(2*exp(5)-2)*exp(x)^2)/((exp(4*x)^2+2*x*exp(4*x)+x^2-
4)*exp(x*exp(5))^2-exp(x)^2),x,method=_RETURNVERBOSE)

[Out]

ln(exp(8*x)+2*x*exp(4*x)+x^2-4)-2*x*exp(5)+ln(exp(2*x*exp(5))-exp(2*x)/(exp(8*x)+2*x*exp(4*x)+x^2-4))

________________________________________________________________________________________

maxima [B]  time = 0.41, size = 72, normalized size = 2.77 2xe5+log(x+e(4x)+2)+log(x+e(4x)2)+log((x2+2xe(4x)+e(8x)4)e(2xe5)e(2x)x2+2xe(4x)+e(8x)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*exp(4*x)^2+(8*x+2)*exp(4*x)+2*x)*exp(x*exp(5))^2+(2*exp(5)-2)*exp(x)^2)/((exp(4*x)^2+2*x*exp(4*x
)+x^2-4)*exp(x*exp(5))^2-exp(x)^2),x, algorithm="maxima")

[Out]

-2*x*e^5 + log(x + e^(4*x) + 2) + log(x + e^(4*x) - 2) + log(((x^2 + 2*x*e^(4*x) + e^(8*x) - 4)*e^(2*x*e^5) -
e^(2*x))/(x^2 + 2*x*e^(4*x) + e^(8*x) - 4))

________________________________________________________________________________________

mupad [B]  time = 0.58, size = 92, normalized size = 3.54 ln(e8xe2xe54e2xe5e2x+x2e2xe5+2xe4xe2xe5e8x+2xe4x+x24)+ln(e8x+2xe4x+x24)2xe5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2*x*exp(5))*(2*x + 8*exp(8*x) + exp(4*x)*(8*x + 2)) + exp(2*x)*(2*exp(5) - 2))/(exp(2*x) - exp(2*x*e
xp(5))*(exp(8*x) + 2*x*exp(4*x) + x^2 - 4)),x)

[Out]

log((exp(8*x)*exp(2*x*exp(5)) - 4*exp(2*x*exp(5)) - exp(2*x) + x^2*exp(2*x*exp(5)) + 2*x*exp(4*x)*exp(2*x*exp(
5)))/(exp(8*x) + 2*x*exp(4*x) + x^2 - 4)) + log(exp(8*x) + 2*x*exp(4*x) + x^2 - 4) - 2*x*exp(5)

________________________________________________________________________________________

sympy [B]  time = 2.89, size = 65, normalized size = 2.50 2xe5+log(x2e2xe5+2xe4xe2xe5+e8xe2xe5e2x4e2xe5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*exp(4*x)**2+(8*x+2)*exp(4*x)+2*x)*exp(x*exp(5))**2+(2*exp(5)-2)*exp(x)**2)/((exp(4*x)**2+2*x*exp
(4*x)+x**2-4)*exp(x*exp(5))**2-exp(x)**2),x)

[Out]

-2*x*exp(5) + log(x**2*exp(2*x*exp(5)) + 2*x*exp(4*x)*exp(2*x*exp(5)) + exp(8*x)*exp(2*x*exp(5)) - exp(2*x) -
4*exp(2*x*exp(5)))

________________________________________________________________________________________