3.85.31
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [F] time = 13.70, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^(2*x)*(-2 + 2*E^5) + E^(2*E^5*x)*(8*E^(8*x) + 2*x + E^(4*x)*(2 + 8*x)))/(-E^(2*x) + E^(2*E^5*x)*(-4 + E
^(8*x) + 2*E^(4*x)*x + x^2)),x]
[Out]
Log[4 - E^(8*x) - 2*E^(4*x)*x - x^2] - 8*(1 - E^5)*Defer[Int][E^(2*x)/((-4 + E^(8*x) + 2*E^(4*x)*x + x^2)*(E^(
2*x) + 4*E^(2*E^5*x) - E^(2*(4 + E^5)*x) - 2*E^(2*(2 + E^5)*x)*x - E^(2*E^5*x)*x^2)), x] - 2*Defer[Int][E^(6*x
)/((-4 + E^(8*x) + 2*E^(4*x)*x + x^2)*(E^(2*x) + 4*E^(2*E^5*x) - E^(2*(4 + E^5)*x) - 2*E^(2*(2 + E^5)*x)*x - E
^(2*E^5*x)*x^2)), x] - 2*(3 + E^5)*Defer[Int][E^(10*x)/((-4 + E^(8*x) + 2*E^(4*x)*x + x^2)*(E^(2*x) + 4*E^(2*E
^5*x) - E^(2*(4 + E^5)*x) - 2*E^(2*(2 + E^5)*x)*x - E^(2*E^5*x)*x^2)), x] - 4*(1 + E^5)*Defer[Int][(E^(6*x)*x)
/((-4 + E^(8*x) + 2*E^(4*x)*x + x^2)*(E^(2*x) + 4*E^(2*E^5*x) - E^(2*(4 + E^5)*x) - 2*E^(2*(2 + E^5)*x)*x - E^
(2*E^5*x)*x^2)), x] + 2*Defer[Int][(E^(2*x)*x)/((-4 + E^(8*x) + 2*E^(4*x)*x + x^2)*(-E^(2*x) - 4*E^(2*E^5*x) +
E^(2*(4 + E^5)*x) + 2*E^(2*(2 + E^5)*x)*x + E^(2*E^5*x)*x^2)), x] - 2*(1 - E^5)*Defer[Int][(E^(2*x)*x^2)/((-4
+ E^(8*x) + 2*E^(4*x)*x + x^2)*(-E^(2*x) - 4*E^(2*E^5*x) + E^(2*(4 + E^5)*x) + 2*E^(2*(2 + E^5)*x)*x + E^(2*E
^5*x)*x^2)), x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 5.13, size = 65, normalized size = 2.50
Antiderivative was successfully verified.
[In]
Integrate[(E^(2*x)*(-2 + 2*E^5) + E^(2*E^5*x)*(8*E^(8*x) + 2*x + E^(4*x)*(2 + 8*x)))/(-E^(2*x) + E^(2*E^5*x)*(
-4 + E^(8*x) + 2*E^(4*x)*x + x^2)),x]
[Out]
-2*E^5*x + Log[-E^(2*x) - 4*E^(2*E^5*x) + E^(8*x + 2*E^5*x) + 2*E^(4*x + 2*E^5*x)*x + E^(2*E^5*x)*x^2]
________________________________________________________________________________________
fricas [B] time = 1.91, size = 73, normalized size = 2.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*exp(4*x)^2+(8*x+2)*exp(4*x)+2*x)*exp(x*exp(5))^2+(2*exp(5)-2)*exp(x)^2)/((exp(4*x)^2+2*x*exp(4*x
)+x^2-4)*exp(x*exp(5))^2-exp(x)^2),x, algorithm="fricas")
[Out]
-2*x*e^5 + log(x^2 + 2*x*e^(4*x) + e^(8*x) - 4) + log(((x^2 + 2*x*e^(4*x) + e^(8*x) - 4)*e^(2*x*e^5) - e^(2*x)
)/(x^2 + 2*x*e^(4*x) + e^(8*x) - 4))
________________________________________________________________________________________
giac [B] time = 0.42, size = 55, normalized size = 2.12
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*exp(4*x)^2+(8*x+2)*exp(4*x)+2*x)*exp(x*exp(5))^2+(2*exp(5)-2)*exp(x)^2)/((exp(4*x)^2+2*x*exp(4*x
)+x^2-4)*exp(x*exp(5))^2-exp(x)^2),x, algorithm="giac")
[Out]
-2*x*e^5 + log(x^2*e^(2*x*e^5) + 2*x*e^(2*x*e^5 + 4*x) - 4*e^(2*x*e^5) + e^(2*x*e^5 + 8*x) - e^(2*x))
________________________________________________________________________________________
maple [B] time = 0.07, size = 56, normalized size = 2.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((8*exp(4*x)^2+(8*x+2)*exp(4*x)+2*x)*exp(x*exp(5))^2+(2*exp(5)-2)*exp(x)^2)/((exp(4*x)^2+2*x*exp(4*x)+x^2-
4)*exp(x*exp(5))^2-exp(x)^2),x,method=_RETURNVERBOSE)
[Out]
ln(exp(8*x)+2*x*exp(4*x)+x^2-4)-2*x*exp(5)+ln(exp(2*x*exp(5))-exp(2*x)/(exp(8*x)+2*x*exp(4*x)+x^2-4))
________________________________________________________________________________________
maxima [B] time = 0.41, size = 72, normalized size = 2.77
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*exp(4*x)^2+(8*x+2)*exp(4*x)+2*x)*exp(x*exp(5))^2+(2*exp(5)-2)*exp(x)^2)/((exp(4*x)^2+2*x*exp(4*x
)+x^2-4)*exp(x*exp(5))^2-exp(x)^2),x, algorithm="maxima")
[Out]
-2*x*e^5 + log(x + e^(4*x) + 2) + log(x + e^(4*x) - 2) + log(((x^2 + 2*x*e^(4*x) + e^(8*x) - 4)*e^(2*x*e^5) -
e^(2*x))/(x^2 + 2*x*e^(4*x) + e^(8*x) - 4))
________________________________________________________________________________________
mupad [B] time = 0.58, size = 92, normalized size = 3.54
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(2*x*exp(5))*(2*x + 8*exp(8*x) + exp(4*x)*(8*x + 2)) + exp(2*x)*(2*exp(5) - 2))/(exp(2*x) - exp(2*x*e
xp(5))*(exp(8*x) + 2*x*exp(4*x) + x^2 - 4)),x)
[Out]
log((exp(8*x)*exp(2*x*exp(5)) - 4*exp(2*x*exp(5)) - exp(2*x) + x^2*exp(2*x*exp(5)) + 2*x*exp(4*x)*exp(2*x*exp(
5)))/(exp(8*x) + 2*x*exp(4*x) + x^2 - 4)) + log(exp(8*x) + 2*x*exp(4*x) + x^2 - 4) - 2*x*exp(5)
________________________________________________________________________________________
sympy [B] time = 2.89, size = 65, normalized size = 2.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*exp(4*x)**2+(8*x+2)*exp(4*x)+2*x)*exp(x*exp(5))**2+(2*exp(5)-2)*exp(x)**2)/((exp(4*x)**2+2*x*exp
(4*x)+x**2-4)*exp(x*exp(5))**2-exp(x)**2),x)
[Out]
-2*x*exp(5) + log(x**2*exp(2*x*exp(5)) + 2*x*exp(4*x)*exp(2*x*exp(5)) + exp(8*x)*exp(2*x*exp(5)) - exp(2*x) -
4*exp(2*x*exp(5)))
________________________________________________________________________________________