3.85.34 5iπlog(4)x2+e5+e5x2dx

Optimal. Leaf size=23 5+iπ+log(4)x+e5+e5x

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 24, normalized size of antiderivative = 1.04, number of steps used = 3, number of rules used = 3, integrand size = 29, number of rulesintegrand size = 0.103, Rules used = {6, 12, 30} 5+iπ+log(4)(1+e5+e5)x

Antiderivative was successfully verified.

[In]

Int[(-5 - I*Pi - Log[4])/(x^2 + E^(5 + E^5)*x^2),x]

[Out]

(5 + I*Pi + Log[4])/((1 + E^(5 + E^5))*x)

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

integral=5iπlog(4)(1+e5+e5)x2dx=(5+iπ+log(4))1x2dx1+e5+e5=5+iπ+log(4)(1+e5+e5)x

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 24, normalized size = 1.04 5+iπ+log(4)(1+e5+e5)x

Antiderivative was successfully verified.

[In]

Integrate[(-5 - I*Pi - Log[4])/(x^2 + E^(5 + E^5)*x^2),x]

[Out]

(5 + I*Pi + Log[4])/((1 + E^(5 + E^5))*x)

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 21, normalized size = 0.91 iπ+2log(2)+5xe(e5+5)+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(2)-I*pi-5)/(x*exp(5)*exp(log(x)+exp(5))+x^2),x, algorithm="fricas")

[Out]

(I*pi + 2*log(2) + 5)/(x*e^(e^5 + 5) + x)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 22, normalized size = 0.96 iπ+2log(2)+5x(e(e5+5)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(2)-I*pi-5)/(x*exp(5)*exp(log(x)+exp(5))+x^2),x, algorithm="giac")

[Out]

(I*pi + 2*log(2) + 5)/(x*(e^(e^5 + 5) + 1))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 25, normalized size = 1.09




method result size



gosper 2ln(2)+iπ+5eln(x)+e5e5+x 25
default 2ln(2)iπ5(ee5+5+1)x 25
norman 2ln(2)+iπ+5(e5ee5+1)x 25
risch iπ(ee5+5+1)x+2ln(2)(ee5+5+1)x+5(ee5+5+1)x 48



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*ln(2)-I*Pi-5)/(x*exp(5)*exp(ln(x)+exp(5))+x^2),x,method=_RETURNVERBOSE)

[Out]

(2*ln(2)+I*Pi+5)/(exp(ln(x)+exp(5))*exp(5)+x)

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 23, normalized size = 1.00 iπ2log(2)5x(e(e5+5)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(2)-I*pi-5)/(x*exp(5)*exp(log(x)+exp(5))+x^2),x, algorithm="maxima")

[Out]

-(-I*pi - 2*log(2) - 5)/(x*(e^(e^5 + 5) + 1))

________________________________________________________________________________________

mupad [B]  time = 0.15, size = 21, normalized size = 0.91 ln(4)+5+Π1ix(ee5+5+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(Pi*1i + 2*log(2) + 5)/(x^2 + x*exp(exp(5) + log(x))*exp(5)),x)

[Out]

(Pi*1i + log(4) + 5)/(x*(exp(exp(5) + 5) + 1))

________________________________________________________________________________________

sympy [A]  time = 0.08, size = 24, normalized size = 1.04 2log(2)+5+iπx(e5ee51)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*ln(2)-I*pi-5)/(x*exp(5)*exp(ln(x)+exp(5))+x**2),x)

[Out]

-(2*log(2) + 5 + I*pi)/(x*(-exp(5)*exp(exp(5)) - 1))

________________________________________________________________________________________