3.85.33 e3x(36+72x2e3xx2+(24+36x)log(x))x3dx

Optimal. Leaf size=22 412e3x(2+log(x))x2log(x2)

________________________________________________________________________________________

Rubi [A]  time = 0.68, antiderivative size = 23, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 4, integrand size = 32, number of rulesintegrand size = 0.125, Rules used = {6741, 12, 6742, 2288} 12e3x(2x+xlog(x))x32log(x)

Antiderivative was successfully verified.

[In]

Int[(36 + 72*x - 2*E^(3*x)*x^2 + (24 + 36*x)*Log[x])/(E^(3*x)*x^3),x]

[Out]

-2*Log[x] - (12*(2*x + x*Log[x]))/(E^(3*x)*x^3)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=2e3x(18+36xe3xx2+12log(x)+18xlog(x))x3dx=2e3x(18+36xe3xx2+12log(x)+18xlog(x))x3dx=2(1x+6e3x(3+6x+2log(x)+3xlog(x))x3)dx=2log(x)+12e3x(3+6x+2log(x)+3xlog(x))x3dx=2log(x)12e3x(2x+xlog(x))x3

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 19, normalized size = 0.86 2log(x)12e3x(2+log(x))x2

Antiderivative was successfully verified.

[In]

Integrate[(36 + 72*x - 2*E^(3*x)*x^2 + (24 + 36*x)*Log[x])/(E^(3*x)*x^3),x]

[Out]

-2*Log[x] - (12*(2 + Log[x]))/(E^(3*x)*x^2)

________________________________________________________________________________________

fricas [A]  time = 0.80, size = 24, normalized size = 1.09 2((x2e(3x)+6)log(x)+12)e(3x)x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((36*x+24)*log(x)-2*x^2*exp(x)^3+72*x+36)/x^3/exp(x)^3,x, algorithm="fricas")

[Out]

-2*((x^2*e^(3*x) + 6)*log(x) + 12)*e^(-3*x)/x^2

________________________________________________________________________________________

giac [A]  time = 0.14, size = 26, normalized size = 1.18 2(x2log(x)+6e(3x)log(x)+12e(3x))x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((36*x+24)*log(x)-2*x^2*exp(x)^3+72*x+36)/x^3/exp(x)^3,x, algorithm="giac")

[Out]

-2*(x^2*log(x) + 6*e^(-3*x)*log(x) + 12*e^(-3*x))/x^2

________________________________________________________________________________________

maple [A]  time = 0.08, size = 34, normalized size = 1.55




method result size



risch 12e3xln(x)x22(ln(x)x2e3x+12)e3xx2 34



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((36*x+24)*ln(x)-2*x^2*exp(x)^3+72*x+36)/x^3/exp(x)^3,x,method=_RETURNVERBOSE)

[Out]

-12/x^2*exp(-3*x)*ln(x)-2*(ln(x)*x^2*exp(3*x)+12)/x^2*exp(-3*x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 12e(3x)log(x)x2216Γ(1,3x)324Γ(2,3x)+12e(3x)x3dx2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((36*x+24)*log(x)-2*x^2*exp(x)^3+72*x+36)/x^3/exp(x)^3,x, algorithm="maxima")

[Out]

-12*e^(-3*x)*log(x)/x^2 - 216*gamma(-1, 3*x) - 324*gamma(-2, 3*x) + 12*integrate(e^(-3*x)/x^3, x) - 2*log(x)

________________________________________________________________________________________

mupad [B]  time = 5.30, size = 20, normalized size = 0.91 2ln(x)2e3x(6ln(x)+12)x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-3*x)*(72*x - 2*x^2*exp(3*x) + log(x)*(36*x + 24) + 36))/x^3,x)

[Out]

- 2*log(x) - (2*exp(-3*x)*(6*log(x) + 12))/x^2

________________________________________________________________________________________

sympy [A]  time = 0.43, size = 20, normalized size = 0.91 2log(x)+(12log(x)24)e3xx2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((36*x+24)*ln(x)-2*x**2*exp(x)**3+72*x+36)/x**3/exp(x)**3,x)

[Out]

-2*log(x) + (-12*log(x) - 24)*exp(-3*x)/x**2

________________________________________________________________________________________