3.85.41 1545x+45x215x3+(600x+210x2162x36x4+6x5+e2x(96x216x2+48x3+192x4144x5+24x6))log2(4+x)(413x+15x27x3+x4)log2(4+x)dx

Optimal. Leaf size=35 3(4e2xx2+x2(5+x)2(1+x)2+5log(4+x))

________________________________________________________________________________________

Rubi [A]  time = 0.71, antiderivative size = 57, normalized size of antiderivative = 1.63, number of steps used = 21, number of rules used = 10, integrand size = 108, number of rulesintegrand size = 0.093, Rules used = {6688, 6742, 37, 43, 2196, 2176, 2194, 2390, 2302, 30} 12e2xx2+75x2(1x)2+3x2+36x1021x+33(1x)2+15log(x4)

Antiderivative was successfully verified.

[In]

Int[(15 - 45*x + 45*x^2 - 15*x^3 + (600*x + 210*x^2 - 162*x^3 - 6*x^4 + 6*x^5 + E^(2*x)*(96*x - 216*x^2 + 48*x
^3 + 192*x^4 - 144*x^5 + 24*x^6))*Log[-4 + x]^2)/((4 - 13*x + 15*x^2 - 7*x^3 + x^4)*Log[-4 + x]^2),x]

[Out]

33/(1 - x)^2 - 102/(1 - x) + 36*x + 3*x^2 + 12*E^(2*x)*x^2 + (75*x^2)/(1 - x)^2 + 15/Log[-4 + x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2390

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(6x(2515x+3x2+x3+4e2x(1+x)3(1+x))(1+x)315(4+x)log2(4+x))dx=6x(2515x+3x2+x3+4e2x(1+x)3(1+x))(1+x)3dx151(4+x)log2(4+x)dx=6(25x(1+x)315x2(1+x)3+3x3(1+x)3+x4(1+x)3+4e2xx(1+x))dx15Subst(1xlog2(x)dx,x,4+x)=6x4(1+x)3dx15Subst(1x2dx,x,log(4+x))+18x3(1+x)3dx+24e2xx(1+x)dx90x2(1+x)3dx150x(1+x)3dx=75x2(1x)2+15log(4+x)+6(3+1(1+x)3+4(1+x)2+61+x+x)dx+18(1+1(1+x)3+3(1+x)2+31+x)dx+24(e2xx+e2xx2)dx90(1(1+x)3+2(1+x)2+11+x)dx=33(1x)21021x+36x+3x2+75x2(1x)2+15log(4+x)+24e2xxdx+24e2xx2dx=33(1x)21021x+36x+12e2xx+3x2+12e2xx2+75x2(1x)2+15log(4+x)12e2xdx24e2xxdx=6e2x+33(1x)21021x+36x+3x2+12e2xx2+75x2(1x)2+15log(4+x)+12e2xdx=33(1x)21021x+36x+3x2+12e2xx2+75x2(1x)2+15log(4+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 57, normalized size = 1.63 33(1x)21021x+36x+3x2+12e2xx2+75x2(1x)2+15log(4+x)

Antiderivative was successfully verified.

[In]

Integrate[(15 - 45*x + 45*x^2 - 15*x^3 + (600*x + 210*x^2 - 162*x^3 - 6*x^4 + 6*x^5 + E^(2*x)*(96*x - 216*x^2
+ 48*x^3 + 192*x^4 - 144*x^5 + 24*x^6))*Log[-4 + x]^2)/((4 - 13*x + 15*x^2 - 7*x^3 + x^4)*Log[-4 + x]^2),x]

[Out]

33/(1 - x)^2 - 102/(1 - x) + 36*x + 3*x^2 + 12*E^(2*x)*x^2 + (75*x^2)/(1 - x)^2 + 15/Log[-4 + x]

________________________________________________________________________________________

fricas [B]  time = 0.64, size = 69, normalized size = 1.97 3(5x2+(x4+10x323x2+4(x42x3+x2)e(2x)+96x48)log(x4)10x+5)(x22x+1)log(x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((24*x^6-144*x^5+192*x^4+48*x^3-216*x^2+96*x)*exp(x)^2+6*x^5-6*x^4-162*x^3+210*x^2+600*x)*log(x-4)^
2-15*x^3+45*x^2-45*x+15)/(x^4-7*x^3+15*x^2-13*x+4)/log(x-4)^2,x, algorithm="fricas")

[Out]

3*(5*x^2 + (x^4 + 10*x^3 - 23*x^2 + 4*(x^4 - 2*x^3 + x^2)*e^(2*x) + 96*x - 48)*log(x - 4) - 10*x + 5)/((x^2 -
2*x + 1)*log(x - 4))

________________________________________________________________________________________

giac [B]  time = 0.26, size = 112, normalized size = 3.20 3(4x4e(2x)log(x4)+x4log(x4)8x3e(2x)log(x4)+10x3log(x4)+4x2e(2x)log(x4)23x2log(x4)+5x2+96xlog(x4)10x48log(x4)+5)x2log(x4)2xlog(x4)+log(x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((24*x^6-144*x^5+192*x^4+48*x^3-216*x^2+96*x)*exp(x)^2+6*x^5-6*x^4-162*x^3+210*x^2+600*x)*log(x-4)^
2-15*x^3+45*x^2-45*x+15)/(x^4-7*x^3+15*x^2-13*x+4)/log(x-4)^2,x, algorithm="giac")

[Out]

3*(4*x^4*e^(2*x)*log(x - 4) + x^4*log(x - 4) - 8*x^3*e^(2*x)*log(x - 4) + 10*x^3*log(x - 4) + 4*x^2*e^(2*x)*lo
g(x - 4) - 23*x^2*log(x - 4) + 5*x^2 + 96*x*log(x - 4) - 10*x - 48*log(x - 4) + 5)/(x^2*log(x - 4) - 2*x*log(x
 - 4) + log(x - 4))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 41, normalized size = 1.17




method result size



default 15ln(x4)+12e2xx2+3x2+36x+108(x1)2+252x1 41
risch 12e2xx424e2xx3+3x4+12e2xx2+30x369x2+288x144x22x+1+15ln(x4) 67



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((24*x^6-144*x^5+192*x^4+48*x^3-216*x^2+96*x)*exp(x)^2+6*x^5-6*x^4-162*x^3+210*x^2+600*x)*ln(x-4)^2-15*x^
3+45*x^2-45*x+15)/(x^4-7*x^3+15*x^2-13*x+4)/ln(x-4)^2,x,method=_RETURNVERBOSE)

[Out]

15/ln(x-4)+12*exp(x)^2*x^2+3*x^2+36*x+108/(x-1)^2+252/(x-1)

________________________________________________________________________________________

maxima [B]  time = 0.46, size = 69, normalized size = 1.97 3(5x2+(x4+10x323x2+4(x42x3+x2)e(2x)+96x48)log(x4)10x+5)(x22x+1)log(x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((24*x^6-144*x^5+192*x^4+48*x^3-216*x^2+96*x)*exp(x)^2+6*x^5-6*x^4-162*x^3+210*x^2+600*x)*log(x-4)^
2-15*x^3+45*x^2-45*x+15)/(x^4-7*x^3+15*x^2-13*x+4)/log(x-4)^2,x, algorithm="maxima")

[Out]

3*(5*x^2 + (x^4 + 10*x^3 - 23*x^2 + 4*(x^4 - 2*x^3 + x^2)*e^(2*x) + 96*x - 48)*log(x - 4) - 10*x + 5)/((x^2 -
2*x + 1)*log(x - 4))

________________________________________________________________________________________

mupad [B]  time = 0.22, size = 42, normalized size = 1.20 36x+252x144x22x+1+12x2e2x+15ln(x4)+3x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((45*x^2 - 45*x - 15*x^3 + log(x - 4)^2*(600*x + 210*x^2 - 162*x^3 - 6*x^4 + 6*x^5 + exp(2*x)*(96*x - 216*x
^2 + 48*x^3 + 192*x^4 - 144*x^5 + 24*x^6)) + 15)/(log(x - 4)^2*(15*x^2 - 13*x - 7*x^3 + x^4 + 4)),x)

[Out]

36*x + (252*x - 144)/(x^2 - 2*x + 1) + 12*x^2*exp(2*x) + 15/log(x - 4) + 3*x^2

________________________________________________________________________________________

sympy [A]  time = 0.47, size = 37, normalized size = 1.06 12x2e2x+3x2+36x+252x144x22x+1+15log(x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((24*x**6-144*x**5+192*x**4+48*x**3-216*x**2+96*x)*exp(x)**2+6*x**5-6*x**4-162*x**3+210*x**2+600*x)
*ln(x-4)**2-15*x**3+45*x**2-45*x+15)/(x**4-7*x**3+15*x**2-13*x+4)/ln(x-4)**2,x)

[Out]

12*x**2*exp(2*x) + 3*x**2 + 36*x + (252*x - 144)/(x**2 - 2*x + 1) + 15/log(x - 4)

________________________________________________________________________________________