3.85.42 19e22x(6log2(4)2log2(4)log(5))dx

Optimal. Leaf size=22 (5+19e22xlog2(4))(3+log(5))

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 2, number of rules used = 2, integrand size = 26, number of rulesintegrand size = 0.077, Rules used = {12, 2194} 19e22xlog2(4)(3log(5))

Antiderivative was successfully verified.

[In]

Int[(E^(2 - 2*x)*(6*Log[4]^2 - 2*Log[4]^2*Log[5]))/9,x]

[Out]

-1/9*(E^(2 - 2*x)*Log[4]^2*(3 - Log[5]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

integral=19(2log2(4)(3log(5)))e22xdx=19e22xlog2(4)(3log(5))

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 19, normalized size = 0.86 19e22xlog2(4)(3+log(5))

Antiderivative was successfully verified.

[In]

Integrate[(E^(2 - 2*x)*(6*Log[4]^2 - 2*Log[4]^2*Log[5]))/9,x]

[Out]

(E^(2 - 2*x)*Log[4]^2*(-3 + Log[5]))/9

________________________________________________________________________________________

fricas [A]  time = 1.16, size = 22, normalized size = 1.00 49(log(5)log(2)23log(2)2)e(2x+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-8*log(2)^2*log(5)+24*log(2)^2)*exp(-x+1)^2,x, algorithm="fricas")

[Out]

4/9*(log(5)*log(2)^2 - 3*log(2)^2)*e^(-2*x + 2)

________________________________________________________________________________________

giac [A]  time = 0.14, size = 22, normalized size = 1.00 49(log(5)log(2)23log(2)2)e(2x+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-8*log(2)^2*log(5)+24*log(2)^2)*exp(-x+1)^2,x, algorithm="giac")

[Out]

4/9*(log(5)*log(2)^2 - 3*log(2)^2)*e^(-2*x + 2)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 19, normalized size = 0.86




method result size



gosper 4ln(2)2(ln(5)3)e2x+29 19
norman (4ln(2)2ln(5)94ln(2)23)e2x+2 25
derivativedivides (8ln(2)2ln(5)+24ln(2)2)e2x+218 26
default (8ln(2)2ln(5)9+8ln(2)23)e2x+22 26
risch 4e2x+2ln(2)2ln(5)94e2x+2ln(2)23 28
meijerg 4e2e2x2xln(2)2ln(5)(1e2e2x)9+4e2e2x2xln(2)2(1e2e2x)3 56



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/9*(-8*ln(2)^2*ln(5)+24*ln(2)^2)*exp(1-x)^2,x,method=_RETURNVERBOSE)

[Out]

4/9*ln(2)^2*(ln(5)-3)*exp(1-x)^2

________________________________________________________________________________________

maxima [A]  time = 0.39, size = 22, normalized size = 1.00 49(log(5)log(2)23log(2)2)e(2x+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-8*log(2)^2*log(5)+24*log(2)^2)*exp(-x+1)^2,x, algorithm="maxima")

[Out]

4/9*(log(5)*log(2)^2 - 3*log(2)^2)*e^(-2*x + 2)

________________________________________________________________________________________

mupad [B]  time = 5.16, size = 16, normalized size = 0.73 4e22xln(2)2(ln(5)3)9

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2 - 2*x)*(8*log(2)^2*log(5) - 24*log(2)^2))/9,x)

[Out]

(4*exp(2 - 2*x)*log(2)^2*(log(5) - 3))/9

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 24, normalized size = 1.09 (12log(2)2+4log(2)2log(5))e22x9

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-8*ln(2)**2*ln(5)+24*ln(2)**2)*exp(-x+1)**2,x)

[Out]

(-12*log(2)**2 + 4*log(2)**2*log(5))*exp(2 - 2*x)/9

________________________________________________________________________________________