3.85.43
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [A] time = 0.92, antiderivative size = 33, normalized size of antiderivative = 1.50,
number of steps used = 1, number of rules used = 1, integrand size = 90, = 0.011, Rules used =
{6706}
Antiderivative was successfully verified.
[In]
Int[(E^(E^x + (1024*E^(-3125 - 5000*x - 3000*x^2 - 800*x^3 - 80*x^4))/x^5)*(E^x*x + (1024*E^(-3125 - 5000*x -
3000*x^2 - 800*x^3 - 80*x^4)*(-5 - 5000*x - 6000*x^2 - 2400*x^3 - 320*x^4))/x^5))/x,x]
[Out]
E^(E^x + (1024*E^(-3125 - 5000*x - 3000*x^2 - 800*x^3 - 80*x^4))/x^5)
Rule 6706
Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /; !FalseQ[q]
] /; FreeQ[F, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 22, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(E^(E^x + (1024*E^(-3125 - 5000*x - 3000*x^2 - 800*x^3 - 80*x^4))/x^5)*(E^x*x + (1024*E^(-3125 - 500
0*x - 3000*x^2 - 800*x^3 - 80*x^4)*(-5 - 5000*x - 6000*x^2 - 2400*x^3 - 320*x^4))/x^5))/x,x]
[Out]
E^(E^x + 1024/(E^(5*(5 + 2*x)^4)*x^5))
________________________________________________________________________________________
fricas [A] time = 0.62, size = 35, normalized size = 1.59
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((1024*(-320*x^4-2400*x^3-6000*x^2-5000*x-5)/x^5/exp(16*x^4+160*x^3+600*x^2+1000*x+625)^5+exp(x)*x)*e
xp(1024/x^5/exp(16*x^4+160*x^3+600*x^2+1000*x+625)^5+exp(x))/x,x, algorithm="fricas")
[Out]
e^((x^5*e^x + 1024*e^(-80*x^4 - 800*x^3 - 3000*x^2 - 5000*x - 3125))/x^5)
________________________________________________________________________________________
giac [A] time = 0.36, size = 30, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((1024*(-320*x^4-2400*x^3-6000*x^2-5000*x-5)/x^5/exp(16*x^4+160*x^3+600*x^2+1000*x+625)^5+exp(x)*x)*e
xp(1024/x^5/exp(16*x^4+160*x^3+600*x^2+1000*x+625)^5+exp(x))/x,x, algorithm="giac")
[Out]
e^(1024*e^(-80*x^4 - 800*x^3 - 3000*x^2 - 5000*x - 3125)/x^5 + e^x)
________________________________________________________________________________________
maple [A] time = 0.08, size = 25, normalized size = 1.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((1024*(-320*x^4-2400*x^3-6000*x^2-5000*x-5)/x^5/exp(16*x^4+160*x^3+600*x^2+1000*x+625)^5+exp(x)*x)*exp(102
4/x^5/exp(16*x^4+160*x^3+600*x^2+1000*x+625)^5+exp(x))/x,x,method=_RETURNVERBOSE)
[Out]
exp((x^5*exp(x)+1024*exp(-5*(5+2*x)^4))/x^5)
________________________________________________________________________________________
maxima [A] time = 0.61, size = 30, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((1024*(-320*x^4-2400*x^3-6000*x^2-5000*x-5)/x^5/exp(16*x^4+160*x^3+600*x^2+1000*x+625)^5+exp(x)*x)*e
xp(1024/x^5/exp(16*x^4+160*x^3+600*x^2+1000*x+625)^5+exp(x))/x,x, algorithm="maxima")
[Out]
e^(1024*e^(-80*x^4 - 800*x^3 - 3000*x^2 - 5000*x - 3125)/x^5 + e^x)
________________________________________________________________________________________
mupad [B] time = 5.25, size = 34, normalized size = 1.55
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(exp(x) + (1024*exp(- 5000*x - 3000*x^2 - 800*x^3 - 80*x^4 - 3125))/x^5)*(x*exp(x) - (exp(- 5000*x - 3
000*x^2 - 800*x^3 - 80*x^4 - 3125)*(5120000*x + 6144000*x^2 + 2457600*x^3 + 327680*x^4 + 5120))/x^5))/x,x)
[Out]
exp((1024*exp(-5000*x)*exp(-3125)*exp(-80*x^4)*exp(-800*x^3)*exp(-3000*x^2))/x^5)*exp(exp(x))
________________________________________________________________________________________
sympy [A] time = 0.60, size = 32, normalized size = 1.45
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((1024*(-320*x**4-2400*x**3-6000*x**2-5000*x-5)/x**5/exp(16*x**4+160*x**3+600*x**2+1000*x+625)**5+exp
(x)*x)*exp(1024/x**5/exp(16*x**4+160*x**3+600*x**2+1000*x+625)**5+exp(x))/x,x)
[Out]
exp(exp(x) + 1024*exp(-80*x**4 - 800*x**3 - 3000*x**2 - 5000*x - 3125)/x**5)
________________________________________________________________________________________