3.85.50
Optimal. Leaf size=30
________________________________________________________________________________________
Rubi [A] time = 0.68, antiderivative size = 39, normalized size of antiderivative = 1.30,
number of steps used = 5, number of rules used = 4, integrand size = 146, = 0.027, Rules used
= {6, 1593, 6688, 2288}
Antiderivative was successfully verified.
[In]
Int[(4*E^x + (E^x*(-4*x + x^2) + 4*E^x*x^2*(I*Pi + Log[Log[4]]) + E^x*x^2*Log[Log[4]]^2*(I*Pi + Log[Log[4]]))*
Log[(-4 + x + 4*x*(I*Pi + Log[Log[4]]) + x*Log[Log[4]]^2*(I*Pi + Log[Log[4]]))/(x*(I*Pi + Log[Log[4]]))])/(-4*
x + x^2 + 4*x^2*(I*Pi + Log[Log[4]]) + x^2*Log[Log[4]]^2*(I*Pi + Log[Log[4]])),x]
[Out]
E^x*Log[4 + Log[Log[4]]^2 + (I*Pi + Log[Log[4]])^(-1) - 4/(x*(I*Pi + Log[Log[4]]))]
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 1593
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 39, normalized size = 1.30
Antiderivative was successfully verified.
[In]
Integrate[(4*E^x + (E^x*(-4*x + x^2) + 4*E^x*x^2*(I*Pi + Log[Log[4]]) + E^x*x^2*Log[Log[4]]^2*(I*Pi + Log[Log[
4]]))*Log[(-4 + x + 4*x*(I*Pi + Log[Log[4]]) + x*Log[Log[4]]^2*(I*Pi + Log[Log[4]]))/(x*(I*Pi + Log[Log[4]]))]
)/(-4*x + x^2 + 4*x^2*(I*Pi + Log[Log[4]]) + x^2*Log[Log[4]]^2*(I*Pi + Log[Log[4]])),x]
[Out]
E^x*Log[4 + Log[Log[4]]^2 + (I*Pi + Log[Log[4]])^(-1) - 4/(x*(I*Pi + Log[Log[4]]))]
________________________________________________________________________________________
fricas [C] time = 1.01, size = 54, normalized size = 1.80
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^2*exp(x)*log(-2*log(2))*log(2*log(2))^2+4*x^2*exp(x)*log(-2*log(2))+(x^2-4*x)*exp(x))*log((x*log
(-2*log(2))*log(2*log(2))^2+4*x*log(-2*log(2))+x-4)/x/log(-2*log(2)))+4*exp(x))/(x^2*log(-2*log(2))*log(2*log(
2))^2+4*x^2*log(-2*log(2))+x^2-4*x),x, algorithm="fricas")
[Out]
e^x*log((2*I*pi*x*log(-2*log(2))^2 + x*log(-2*log(2))^3 - (pi^2*x - 4*x)*log(-2*log(2)) + x - 4)/(x*log(-2*log
(2))))
________________________________________________________________________________________
giac [B] time = 1.69, size = 443, normalized size = 14.77
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^2*exp(x)*log(-2*log(2))*log(2*log(2))^2+4*x^2*exp(x)*log(-2*log(2))+(x^2-4*x)*exp(x))*log((x*log
(-2*log(2))*log(2*log(2))^2+4*x*log(-2*log(2))+x-4)/x/log(-2*log(2)))+4*exp(x))/(x^2*log(-2*log(2))*log(2*log(
2))^2+4*x^2*log(-2*log(2))+x^2-4*x),x, algorithm="giac")
[Out]
1/2*e^x*log(pi^2*x^2*log(2)^4 + x^2*log(2)^6 + 4*pi^2*x^2*log(2)^3*log(log(2)) + 6*x^2*log(2)^5*log(log(2)) +
6*pi^2*x^2*log(2)^2*log(log(2))^2 + 15*x^2*log(2)^4*log(log(2))^2 + 4*pi^2*x^2*log(2)*log(log(2))^3 + 20*x^2*l
og(2)^3*log(log(2))^3 + pi^2*x^2*log(log(2))^4 + 15*x^2*log(2)^2*log(log(2))^4 + 6*x^2*log(2)*log(log(2))^5 +
x^2*log(log(2))^6 + 8*pi^2*x^2*log(2)^2 + 8*x^2*log(2)^4 + 16*pi^2*x^2*log(2)*log(log(2)) + 32*x^2*log(2)^3*lo
g(log(2)) + 8*pi^2*x^2*log(log(2))^2 + 48*x^2*log(2)^2*log(log(2))^2 + 32*x^2*log(2)*log(log(2))^3 + 8*x^2*log
(log(2))^4 + 2*x^2*log(2)^3 + 6*x^2*log(2)^2*log(log(2)) + 6*x^2*log(2)*log(log(2))^2 + 2*x^2*log(log(2))^3 +
16*pi^2*x^2 + 16*x^2*log(2)^2 - 8*x*log(2)^3 + 32*x^2*log(2)*log(log(2)) - 24*x*log(2)^2*log(log(2)) + 16*x^2*
log(log(2))^2 - 24*x*log(2)*log(log(2))^2 - 8*x*log(log(2))^3 + 8*x^2*log(2) + 8*x^2*log(log(2)) + x^2 - 32*x*
log(2) - 32*x*log(log(2)) - 8*x + 16) - 1/2*e^x*log(pi^2*x^2 + x^2*log(2)^2 + 2*x^2*log(2)*log(log(2)) + x^2*l
og(log(2))^2)
________________________________________________________________________________________
maple [A] time = 1.23, size = 41, normalized size = 1.37
|
|
|
method |
result |
size |
|
|
|
default |
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((x^2*exp(x)*ln(-2*ln(2))*ln(2*ln(2))^2+4*x^2*exp(x)*ln(-2*ln(2))+(x^2-4*x)*exp(x))*ln((x*ln(-2*ln(2))*ln(
2*ln(2))^2+4*x*ln(-2*ln(2))+x-4)/x/ln(-2*ln(2)))+4*exp(x))/(x^2*ln(-2*ln(2))*ln(2*ln(2))^2+4*x^2*ln(-2*ln(2))+
x^2-4*x),x,method=_RETURNVERBOSE)
[Out]
exp(x)*ln((x*ln(-2*ln(2))*ln(2*ln(2))^2+4*x*ln(-2*ln(2))+x-4)/x/ln(-2*ln(2)))
________________________________________________________________________________________
maxima [C] time = 0.55, size = 82, normalized size = 2.73
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^2*exp(x)*log(-2*log(2))*log(2*log(2))^2+4*x^2*exp(x)*log(-2*log(2))+(x^2-4*x)*exp(x))*log((x*log
(-2*log(2))*log(2*log(2))^2+4*x*log(-2*log(2))+x-4)/x/log(-2*log(2)))+4*exp(x))/(x^2*log(-2*log(2))*log(2*log(
2))^2+4*x^2*log(-2*log(2))+x^2-4*x),x, algorithm="maxima")
[Out]
-(log(I*pi + log(2) + log(log(2))) + log(x))*e^x + e^x*log((4*I*pi + I*pi*log(2)^2 + log(2)^3 + (I*pi + 3*log(
2))*log(log(2))^2 + log(log(2))^3 + (2*I*pi*log(2) + 3*log(2)^2 + 4)*log(log(2)) + 4*log(2) + 1)*x - 4)
________________________________________________________________________________________
mupad [B] time = 6.51, size = 38, normalized size = 1.27
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((4*exp(x) + log((x + 4*x*log(-2*log(2)) + x*log(-2*log(2))*log(2*log(2))^2 - 4)/(x*log(-2*log(2))))*(4*x^2
*log(-2*log(2))*exp(x) - exp(x)*(4*x - x^2) + x^2*log(-2*log(2))*log(2*log(2))^2*exp(x)))/(4*x^2*log(-2*log(2)
) - 4*x + x^2 + x^2*log(-2*log(2))*log(2*log(2))^2),x)
[Out]
exp(x)*log((x + 4*x*log(-log(4)) + x*log(-log(4))*log(log(4))^2 - 4)/(x*log(-log(4))))
________________________________________________________________________________________
sympy [B] time = 51.20, size = 313, normalized size = 10.43
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x**2*exp(x)*ln(-2*ln(2))*ln(2*ln(2))**2+4*x**2*exp(x)*ln(-2*ln(2))+(x**2-4*x)*exp(x))*ln((x*ln(-2*
ln(2))*ln(2*ln(2))**2+4*x*ln(-2*ln(2))+x-4)/x/ln(-2*ln(2)))+4*exp(x))/(x**2*ln(-2*ln(2))*ln(2*ln(2))**2+4*x**2
*ln(-2*ln(2))+x**2-4*x),x)
[Out]
exp(x)*log(4*x*log(log(2))/(x*log(log(2)) + x*log(2) + I*pi*x) + 3*x*log(2)**2*log(log(2))/(x*log(log(2)) + x*
log(2) + I*pi*x) + x*log(log(2))**3/(x*log(log(2)) + x*log(2) + I*pi*x) + 3*x*log(2)*log(log(2))**2/(x*log(log
(2)) + x*log(2) + I*pi*x) + x*log(2)**3/(x*log(log(2)) + x*log(2) + I*pi*x) + x/(x*log(log(2)) + x*log(2) + I*
pi*x) + 4*x*log(2)/(x*log(log(2)) + x*log(2) + I*pi*x) + 2*I*pi*x*log(2)*log(log(2))/(x*log(log(2)) + x*log(2)
+ I*pi*x) + I*pi*x*log(log(2))**2/(x*log(log(2)) + x*log(2) + I*pi*x) + I*pi*x*log(2)**2/(x*log(log(2)) + x*l
og(2) + I*pi*x) + 4*I*pi*x/(x*log(log(2)) + x*log(2) + I*pi*x) - 4/(x*log(log(2)) + x*log(2) + I*pi*x))
________________________________________________________________________________________