3.85.50 4ex+(ex(4x+x2)+4exx2(iπ+log(log(4)))+exx2log2(log(4))(iπ+log(log(4))))log(4+x+4x(iπ+log(log(4)))+xlog2(log(4))(iπ+log(log(4)))x(iπ+log(log(4))))4x+x2+4x2(iπ+log(log(4)))+x2log2(log(4))(iπ+log(log(4)))dx

Optimal. Leaf size=30 exlog(4+log2(log(4))+4+xx(iπ+log(log(4))))

________________________________________________________________________________________

Rubi [A]  time = 0.68, antiderivative size = 39, normalized size of antiderivative = 1.30, number of steps used = 5, number of rules used = 4, integrand size = 146, number of rulesintegrand size = 0.027, Rules used = {6, 1593, 6688, 2288} exlog(4x(log(log(4))+iπ)+4+log2(log(4))+1log(log(4))+iπ)

Antiderivative was successfully verified.

[In]

Int[(4*E^x + (E^x*(-4*x + x^2) + 4*E^x*x^2*(I*Pi + Log[Log[4]]) + E^x*x^2*Log[Log[4]]^2*(I*Pi + Log[Log[4]]))*
Log[(-4 + x + 4*x*(I*Pi + Log[Log[4]]) + x*Log[Log[4]]^2*(I*Pi + Log[Log[4]]))/(x*(I*Pi + Log[Log[4]]))])/(-4*
x + x^2 + 4*x^2*(I*Pi + Log[Log[4]]) + x^2*Log[Log[4]]^2*(I*Pi + Log[Log[4]])),x]

[Out]

E^x*Log[4 + Log[Log[4]]^2 + (I*Pi + Log[Log[4]])^(-1) - 4/(x*(I*Pi + Log[Log[4]]))]

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=4ex+(ex(4x+x2)+4exx2(iπ+log(log(4)))+exx2log2(log(4))(iπ+log(log(4))))log(4+x+4x(iπ+log(log(4)))+xlog2(log(4))(iπ+log(log(4)))x(iπ+log(log(4))))4x+x2log2(log(4))(iπ+log(log(4)))+x2(1+4(iπ+log(log(4))))dx=4ex+(ex(4x+x2)+4exx2(iπ+log(log(4)))+exx2log2(log(4))(iπ+log(log(4))))log(4+x+4x(iπ+log(log(4)))+xlog2(log(4))(iπ+log(log(4)))x(iπ+log(log(4))))4x+x2(1+4(iπ+log(log(4)))+log2(log(4))(iπ+log(log(4))))dx=4ex+(ex(4x+x2)+4exx2(iπ+log(log(4)))+exx2log2(log(4))(iπ+log(log(4))))log(4+x+4x(iπ+log(log(4)))+xlog2(log(4))(iπ+log(log(4)))x(iπ+log(log(4))))x(4+x(1+4(iπ+log(log(4)))+log2(log(4))(iπ+log(log(4)))))dx=ex(4x(4+x(1+4log(log(4))+log3(log(4))+iπ(4+log2(log(4)))))+log(4+log2(log(4))+1iπ+log(log(4))4x(iπ+log(log(4)))))dx=exlog(4+log2(log(4))+1iπ+log(log(4))4x(iπ+log(log(4))))

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 39, normalized size = 1.30 exlog(4+log2(log(4))+1iπ+log(log(4))4x(iπ+log(log(4))))

Antiderivative was successfully verified.

[In]

Integrate[(4*E^x + (E^x*(-4*x + x^2) + 4*E^x*x^2*(I*Pi + Log[Log[4]]) + E^x*x^2*Log[Log[4]]^2*(I*Pi + Log[Log[
4]]))*Log[(-4 + x + 4*x*(I*Pi + Log[Log[4]]) + x*Log[Log[4]]^2*(I*Pi + Log[Log[4]]))/(x*(I*Pi + Log[Log[4]]))]
)/(-4*x + x^2 + 4*x^2*(I*Pi + Log[Log[4]]) + x^2*Log[Log[4]]^2*(I*Pi + Log[Log[4]])),x]

[Out]

E^x*Log[4 + Log[Log[4]]^2 + (I*Pi + Log[Log[4]])^(-1) - 4/(x*(I*Pi + Log[Log[4]]))]

________________________________________________________________________________________

fricas [C]  time = 1.01, size = 54, normalized size = 1.80 exlog(2iπxlog(2log(2))2+xlog(2log(2))3(π2x4x)log(2log(2))+x4xlog(2log(2)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^2*exp(x)*log(-2*log(2))*log(2*log(2))^2+4*x^2*exp(x)*log(-2*log(2))+(x^2-4*x)*exp(x))*log((x*log
(-2*log(2))*log(2*log(2))^2+4*x*log(-2*log(2))+x-4)/x/log(-2*log(2)))+4*exp(x))/(x^2*log(-2*log(2))*log(2*log(
2))^2+4*x^2*log(-2*log(2))+x^2-4*x),x, algorithm="fricas")

[Out]

e^x*log((2*I*pi*x*log(-2*log(2))^2 + x*log(-2*log(2))^3 - (pi^2*x - 4*x)*log(-2*log(2)) + x - 4)/(x*log(-2*log
(2))))

________________________________________________________________________________________

giac [B]  time = 1.69, size = 443, normalized size = 14.77 12exlog(π2x2log(2)4+x2log(2)6+4π2x2log(2)3log(log(2))+6x2log(2)5log(log(2))+6π2x2log(2)2log(log(2))2+15x2log(2)4log(log(2))2+4π2x2log(2)log(log(2))3+20x2log(2)3log(log(2))3+π2x2log(log(2))4+15x2log(2)2log(log(2))4+6x2log(2)log(log(2))5+x2log(log(2))6+8π2x2log(2)2+8x2log(2)4+16π2x2log(2)log(log(2))+32x2log(2)3log(log(2))+8π2x2log(log(2))2+48x2log(2)2log(log(2))2+32x2log(2)log(log(2))3+8x2log(log(2))4+2x2log(2)3+6x2log(2)2log(log(2))+6x2log(2)log(log(2))2+2x2log(log(2))3+16π2x2+16x2log(2)28xlog(2)3+32x2log(2)log(log(2))24xlog(2)2log(log(2))+16x2log(log(2))224xlog(2)log(log(2))28xlog(log(2))3+8x2log(2)+8x2log(log(2))+x232xlog(2)32xlog(log(2))8x+16)12exlog(π2x2+x2log(2)2+2x2log(2)log(log(2))+x2log(log(2))2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^2*exp(x)*log(-2*log(2))*log(2*log(2))^2+4*x^2*exp(x)*log(-2*log(2))+(x^2-4*x)*exp(x))*log((x*log
(-2*log(2))*log(2*log(2))^2+4*x*log(-2*log(2))+x-4)/x/log(-2*log(2)))+4*exp(x))/(x^2*log(-2*log(2))*log(2*log(
2))^2+4*x^2*log(-2*log(2))+x^2-4*x),x, algorithm="giac")

[Out]

1/2*e^x*log(pi^2*x^2*log(2)^4 + x^2*log(2)^6 + 4*pi^2*x^2*log(2)^3*log(log(2)) + 6*x^2*log(2)^5*log(log(2)) +
6*pi^2*x^2*log(2)^2*log(log(2))^2 + 15*x^2*log(2)^4*log(log(2))^2 + 4*pi^2*x^2*log(2)*log(log(2))^3 + 20*x^2*l
og(2)^3*log(log(2))^3 + pi^2*x^2*log(log(2))^4 + 15*x^2*log(2)^2*log(log(2))^4 + 6*x^2*log(2)*log(log(2))^5 +
x^2*log(log(2))^6 + 8*pi^2*x^2*log(2)^2 + 8*x^2*log(2)^4 + 16*pi^2*x^2*log(2)*log(log(2)) + 32*x^2*log(2)^3*lo
g(log(2)) + 8*pi^2*x^2*log(log(2))^2 + 48*x^2*log(2)^2*log(log(2))^2 + 32*x^2*log(2)*log(log(2))^3 + 8*x^2*log
(log(2))^4 + 2*x^2*log(2)^3 + 6*x^2*log(2)^2*log(log(2)) + 6*x^2*log(2)*log(log(2))^2 + 2*x^2*log(log(2))^3 +
16*pi^2*x^2 + 16*x^2*log(2)^2 - 8*x*log(2)^3 + 32*x^2*log(2)*log(log(2)) - 24*x*log(2)^2*log(log(2)) + 16*x^2*
log(log(2))^2 - 24*x*log(2)*log(log(2))^2 - 8*x*log(log(2))^3 + 8*x^2*log(2) + 8*x^2*log(log(2)) + x^2 - 32*x*
log(2) - 32*x*log(log(2)) - 8*x + 16) - 1/2*e^x*log(pi^2*x^2 + x^2*log(2)^2 + 2*x^2*log(2)*log(log(2)) + x^2*l
og(log(2))^2)

________________________________________________________________________________________

maple [A]  time = 1.23, size = 41, normalized size = 1.37




method result size



default exln(xln(2ln(2))ln(2ln(2))2+4xln(2ln(2))+x4xln(2ln(2))) 41
norman exln(xln(2ln(2))ln(2ln(2))2+4xln(2ln(2))+x4xln(2ln(2))) 41
risch exln((x(ln(2)+ln(ln(2)))2+4x)(ln(2)+ln(ln(2))+iπ)+x4)exln(x)iπcsgn(ix)csgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4))csgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4)x)ex2+iπcsgn(ix)csgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4)x)2ex2+iπcsgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4))csgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4)x)2ex2iπcsgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4)x)csgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4)ln(2ln(2))x)ex2+iπcsgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4)ln(2ln(2))x)2ex2iπcsgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4)x)3ex2+iπcsgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4)x)csgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4)ln(2ln(2))x)2ex2iπcsgn(i((xln(2ln(2))2+4x)ln(2ln(2))+x4)ln(2ln(2))x)3ex2ln(ln(2)+ln(ln(2))+iπ)ex 499



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^2*exp(x)*ln(-2*ln(2))*ln(2*ln(2))^2+4*x^2*exp(x)*ln(-2*ln(2))+(x^2-4*x)*exp(x))*ln((x*ln(-2*ln(2))*ln(
2*ln(2))^2+4*x*ln(-2*ln(2))+x-4)/x/ln(-2*ln(2)))+4*exp(x))/(x^2*ln(-2*ln(2))*ln(2*ln(2))^2+4*x^2*ln(-2*ln(2))+
x^2-4*x),x,method=_RETURNVERBOSE)

[Out]

exp(x)*ln((x*ln(-2*ln(2))*ln(2*ln(2))^2+4*x*ln(-2*ln(2))+x-4)/x/ln(-2*ln(2)))

________________________________________________________________________________________

maxima [C]  time = 0.55, size = 82, normalized size = 2.73 (log(iπ+log(2)+log(log(2)))+log(x))ex+exlog((4iπ+iπlog(2)2+log(2)3+(iπ+3log(2))log(log(2))2+log(log(2))3+(2iπlog(2)+3log(2)2+4)log(log(2))+4log(2)+1)x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^2*exp(x)*log(-2*log(2))*log(2*log(2))^2+4*x^2*exp(x)*log(-2*log(2))+(x^2-4*x)*exp(x))*log((x*log
(-2*log(2))*log(2*log(2))^2+4*x*log(-2*log(2))+x-4)/x/log(-2*log(2)))+4*exp(x))/(x^2*log(-2*log(2))*log(2*log(
2))^2+4*x^2*log(-2*log(2))+x^2-4*x),x, algorithm="maxima")

[Out]

-(log(I*pi + log(2) + log(log(2))) + log(x))*e^x + e^x*log((4*I*pi + I*pi*log(2)^2 + log(2)^3 + (I*pi + 3*log(
2))*log(log(2))^2 + log(log(2))^3 + (2*I*pi*log(2) + 3*log(2)^2 + 4)*log(log(2)) + 4*log(2) + 1)*x - 4)

________________________________________________________________________________________

mupad [B]  time = 6.51, size = 38, normalized size = 1.27 exln(x+4xln(ln(4))+xln(ln(4))ln(ln(4))24xln(ln(4)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*exp(x) + log((x + 4*x*log(-2*log(2)) + x*log(-2*log(2))*log(2*log(2))^2 - 4)/(x*log(-2*log(2))))*(4*x^2
*log(-2*log(2))*exp(x) - exp(x)*(4*x - x^2) + x^2*log(-2*log(2))*log(2*log(2))^2*exp(x)))/(4*x^2*log(-2*log(2)
) - 4*x + x^2 + x^2*log(-2*log(2))*log(2*log(2))^2),x)

[Out]

exp(x)*log((x + 4*x*log(-log(4)) + x*log(-log(4))*log(log(4))^2 - 4)/(x*log(-log(4))))

________________________________________________________________________________________

sympy [B]  time = 51.20, size = 313, normalized size = 10.43 exlog(4xlog(log(2))xlog(log(2))+xlog(2)+iπx+3xlog(2)2log(log(2))xlog(log(2))+xlog(2)+iπx+xlog(log(2))3xlog(log(2))+xlog(2)+iπx+3xlog(2)log(log(2))2xlog(log(2))+xlog(2)+iπx+xlog(2)3xlog(log(2))+xlog(2)+iπx+xxlog(log(2))+xlog(2)+iπx+4xlog(2)xlog(log(2))+xlog(2)+iπx+2iπxlog(2)log(log(2))xlog(log(2))+xlog(2)+iπx+iπxlog(log(2))2xlog(log(2))+xlog(2)+iπx+iπxlog(2)2xlog(log(2))+xlog(2)+iπx+4iπxxlog(log(2))+xlog(2)+iπx4xlog(log(2))+xlog(2)+iπx)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x**2*exp(x)*ln(-2*ln(2))*ln(2*ln(2))**2+4*x**2*exp(x)*ln(-2*ln(2))+(x**2-4*x)*exp(x))*ln((x*ln(-2*
ln(2))*ln(2*ln(2))**2+4*x*ln(-2*ln(2))+x-4)/x/ln(-2*ln(2)))+4*exp(x))/(x**2*ln(-2*ln(2))*ln(2*ln(2))**2+4*x**2
*ln(-2*ln(2))+x**2-4*x),x)

[Out]

exp(x)*log(4*x*log(log(2))/(x*log(log(2)) + x*log(2) + I*pi*x) + 3*x*log(2)**2*log(log(2))/(x*log(log(2)) + x*
log(2) + I*pi*x) + x*log(log(2))**3/(x*log(log(2)) + x*log(2) + I*pi*x) + 3*x*log(2)*log(log(2))**2/(x*log(log
(2)) + x*log(2) + I*pi*x) + x*log(2)**3/(x*log(log(2)) + x*log(2) + I*pi*x) + x/(x*log(log(2)) + x*log(2) + I*
pi*x) + 4*x*log(2)/(x*log(log(2)) + x*log(2) + I*pi*x) + 2*I*pi*x*log(2)*log(log(2))/(x*log(log(2)) + x*log(2)
 + I*pi*x) + I*pi*x*log(log(2))**2/(x*log(log(2)) + x*log(2) + I*pi*x) + I*pi*x*log(2)**2/(x*log(log(2)) + x*l
og(2) + I*pi*x) + 4*I*pi*x/(x*log(log(2)) + x*log(2) + I*pi*x) - 4/(x*log(log(2)) + x*log(2) + I*pi*x))

________________________________________________________________________________________