3.85.51 e4(15x6x2)+e4(6+3x)log(e2x(2+x))2x2+x3dx

Optimal. Leaf size=20 13e4log(e2x(2+x))x

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 18, normalized size of antiderivative = 0.90, number of steps used = 8, number of rules used = 4, integrand size = 45, number of rulesintegrand size = 0.089, Rules used = {1593, 6742, 72, 2551} 3e4log(e2x(x+2))x

Antiderivative was successfully verified.

[In]

Int[(E^4*(-15*x - 6*x^2) + E^4*(6 + 3*x)*Log[E^(2*x)*(2 + x)])/(2*x^2 + x^3),x]

[Out]

(-3*E^4*Log[E^(2*x)*(2 + x)])/x

Rule 72

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Int[ExpandIntegrand[(
e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[p]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 2551

Int[Log[u_]*((a_.) + (b_.)*(x_))^(m_.), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Log[u])/(b*(m + 1)), x] - Dist[1/
(b*(m + 1)), Int[SimplifyIntegrand[((a + b*x)^(m + 1)*D[u, x])/u, x], x], x] /; FreeQ[{a, b, m}, x] && Inverse
FunctionFreeQ[u, x] && NeQ[m, -1]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=e4(15x6x2)+e4(6+3x)log(e2x(2+x))x2(2+x)dx=(3e4(5+2x)x(2+x)+3e4log(e2x(2+x))x2)dx=((3e4)5+2xx(2+x)dx)+(3e4)log(e2x(2+x))x2dx=3e4log(e2x(2+x))x+(3e4)5+2xx(2+x)dx(3e4)(52x12(2+x))dx=152e4log(x)+32e4log(2+x)3e4log(e2x(2+x))x+(3e4)(52x12(2+x))dx=3e4log(e2x(2+x))x

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 18, normalized size = 0.90 3e4log(e2x(2+x))x

Antiderivative was successfully verified.

[In]

Integrate[(E^4*(-15*x - 6*x^2) + E^4*(6 + 3*x)*Log[E^(2*x)*(2 + x)])/(2*x^2 + x^3),x]

[Out]

(-3*E^4*Log[E^(2*x)*(2 + x)])/x

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 16, normalized size = 0.80 3e4log((x+2)e(2x))x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6+3*x)*exp(4)*log((2+x)/exp(-2*x))+(-6*x^2-15*x)*exp(4))/(x^3+2*x^2),x, algorithm="fricas")

[Out]

-3*e^4*log((x + 2)*e^(2*x))/x

________________________________________________________________________________________

giac [A]  time = 0.12, size = 11, normalized size = 0.55 3e4log(x+2)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6+3*x)*exp(4)*log((2+x)/exp(-2*x))+(-6*x^2-15*x)*exp(4))/(x^3+2*x^2),x, algorithm="giac")

[Out]

-3*e^4*log(x + 2)/x

________________________________________________________________________________________

maple [A]  time = 0.43, size = 19, normalized size = 0.95




method result size



norman 3e4ln(e2x(2+x))x 19
default 3e4ln(e2x(2+x))x+6e4ln(2x+4)+15e4ln(2x)215e4ln(2x4)215e4ln(x)2+3e4ln(2+x)2 62
risch 3e4ln(e2x)x3e4(iπcsgn(i(2+x))csgn(ie2x)csgn(ie2x(2+x))+iπcsgn(i(2+x))csgn(ie2x(2+x))2+iπcsgn(ie2x)csgn(ie2x(2+x))2iπcsgn(ie2x(2+x))3+2ln(2+x))2x 124



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((6+3*x)*exp(4)*ln((2+x)/exp(-2*x))+(-6*x^2-15*x)*exp(4))/(x^3+2*x^2),x,method=_RETURNVERBOSE)

[Out]

-3/x*exp(4)*ln((2+x)/exp(-2*x))

________________________________________________________________________________________

maxima [B]  time = 0.40, size = 46, normalized size = 2.30 152(log(x+2)log(x))e46e4log(x+2)+152e4log(x)3(xe4+2e4)log(x+2)2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6+3*x)*exp(4)*log((2+x)/exp(-2*x))+(-6*x^2-15*x)*exp(4))/(x^3+2*x^2),x, algorithm="maxima")

[Out]

15/2*(log(x + 2) - log(x))*e^4 - 6*e^4*log(x + 2) + 15/2*e^4*log(x) - 3/2*(x*e^4 + 2*e^4)*log(x + 2)/x

________________________________________________________________________________________

mupad [B]  time = 5.34, size = 11, normalized size = 0.55 3ln(x+2)e4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(4)*(15*x + 6*x^2) - exp(4)*log(exp(2*x)*(x + 2))*(3*x + 6))/(2*x^2 + x^3),x)

[Out]

-(3*log(x + 2)*exp(4))/x

________________________________________________________________________________________

sympy [A]  time = 0.21, size = 17, normalized size = 0.85 3e4log((x+2)e2x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6+3*x)*exp(4)*ln((2+x)/exp(-2*x))+(-6*x**2-15*x)*exp(4))/(x**3+2*x**2),x)

[Out]

-3*exp(4)*log((x + 2)*exp(2*x))/x

________________________________________________________________________________________