3.85.52
Optimal. Leaf size=30
________________________________________________________________________________________
Rubi [F] time = 32.68, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[((-1024*x^4 - 1536*x^5)*Log[x] + E^4*(-1024*x^3 - 1536*x^4)*Log[x]^2 + E^8*(-384*x^2 - 576*x^3)*Log[x]^3 +
E^12*(-64*x - 96*x^2)*Log[x]^4 + E^16*(-4 - 6*x)*Log[x]^5 + (-2048*x^4 - 3072*x^5 + (-768*x^5 + E^4*(-1536*x^
3 - 2304*x^4))*Log[x] + (E^8*(-384*x^2 - 576*x^3) + E^4*(-512*x^3 - 1536*x^4))*Log[x]^2 + (E^12*(-32*x - 48*x^
2) + E^8*(-384*x^2 - 864*x^3))*Log[x]^3 + E^12*(-96*x - 192*x^2)*Log[x]^4 + E^16*(-8 - 15*x)*Log[x]^5)*Log[x^2
])/((8*x^5 + 24*x^6 + 18*x^7)*Log[x]^5*Log[x^2]^2),x]
[Out]
(-6075*E^16*x*ExpIntegralEi[Log[x^2]/2])/(256*Sqrt[x^2]) + (81*E^16)/(64*Log[x^2]) + E^16/(4*x^4*Log[x^2]) - (
3*E^16)/(8*x^3*Log[x^2]) + (9*E^16)/(16*x^2*Log[x^2]) - (27*E^16)/(32*x*Log[x^2]) + (243*E^16*Defer[Int][1/((2
+ 3*x)*Log[x^2]^2), x])/32 - 128*Defer[Int][1/(x*Log[x]^4*Log[x^2]^2), x] + 384*Defer[Int][1/((2 + 3*x)*Log[x
]^4*Log[x^2]^2), x] - 128*E^4*Defer[Int][1/(x^2*Log[x]^3*Log[x^2]^2), x] + 192*E^4*Defer[Int][1/(x*Log[x]^3*Lo
g[x^2]^2), x] - 576*E^4*Defer[Int][1/((2 + 3*x)*Log[x]^3*Log[x^2]^2), x] - 48*E^8*Defer[Int][1/(x^3*Log[x]^2*L
og[x^2]^2), x] + 72*E^8*Defer[Int][1/(x^2*Log[x]^2*Log[x^2]^2), x] - 108*E^8*Defer[Int][1/(x*Log[x]^2*Log[x^2]
^2), x] + 324*E^8*Defer[Int][1/((2 + 3*x)*Log[x]^2*Log[x^2]^2), x] - 8*E^12*Defer[Int][1/(x^4*Log[x]*Log[x^2]^
2), x] + 12*E^12*Defer[Int][1/(x^3*Log[x]*Log[x^2]^2), x] - 18*E^12*Defer[Int][1/(x^2*Log[x]*Log[x^2]^2), x] +
27*E^12*Defer[Int][1/(x*Log[x]*Log[x^2]^2), x] - 81*E^12*Defer[Int][1/((2 + 3*x)*Log[x]*Log[x^2]^2), x] + (24
3*E^16*Defer[Int][1/((2 + 3*x)^2*Log[x^2]), x])/8 + (3645*E^16*Defer[Int][x/((2 + 3*x)^2*Log[x^2]), x])/64 + (
1215*E^16*Defer[Int][1/((2 + 3*x)*Log[x^2]), x])/16 + (18225*E^16*Defer[Int][x/((2 + 3*x)*Log[x^2]), x])/128 -
256*Defer[Int][1/(x*Log[x]^5*Log[x^2]), x] + 768*Defer[Int][1/((2 + 3*x)*Log[x]^5*Log[x^2]), x] - 192*E^4*Def
er[Int][1/(x^2*Log[x]^4*Log[x^2]), x] + 288*E^4*Defer[Int][1/(x*Log[x]^4*Log[x^2]), x] - 384*Defer[Int][1/((2
+ 3*x)^2*Log[x]^4*Log[x^2]), x] - 864*E^4*Defer[Int][1/((2 + 3*x)*Log[x]^4*Log[x^2]), x] - 48*E^8*Defer[Int][1
/(x^3*Log[x]^3*Log[x^2]), x] + 144*E^8*Defer[Int][1/(x^2*Log[x]^3*Log[x^2]), x] - 8*E^4*(8 + 9*E^4)*Defer[Int]
[1/(x^2*Log[x]^3*Log[x^2]), x] - 192*E^4*Defer[Int][1/(x*Log[x]^3*Log[x^2]), x] - 324*E^8*Defer[Int][1/(x*Log[
x]^3*Log[x^2]), x] + 24*E^4*(8 + 9*E^4)*Defer[Int][1/(x*Log[x]^3*Log[x^2]), x] + 1152*E^4*Defer[Int][1/((2 + 3
*x)^2*Log[x]^3*Log[x^2]), x] + 648*E^8*Defer[Int][1/((2 + 3*x)^2*Log[x]^3*Log[x^2]), x] - 72*E^4*(8 + 9*E^4)*D
efer[Int][1/((2 + 3*x)^2*Log[x]^3*Log[x^2]), x] + 576*E^4*Defer[Int][1/((2 + 3*x)*Log[x]^3*Log[x^2]), x] + 972
*E^8*Defer[Int][1/((2 + 3*x)*Log[x]^3*Log[x^2]), x] - 72*E^4*(8 + 9*E^4)*Defer[Int][1/((2 + 3*x)*Log[x]^3*Log[
x^2]), x] - 4*E^12*Defer[Int][1/(x^4*Log[x]^2*Log[x^2]), x] + 12*E^12*Defer[Int][1/(x^3*Log[x]^2*Log[x^2]), x]
- 6*E^8*(8 + E^4)*Defer[Int][1/(x^3*Log[x]^2*Log[x^2]), x] - 108*E^8*Defer[Int][1/(x^2*Log[x]^2*Log[x^2]), x]
- 27*E^12*Defer[Int][1/(x^2*Log[x]^2*Log[x^2]), x] + 18*E^8*(8 + E^4)*Defer[Int][1/(x^2*Log[x]^2*Log[x^2]), x
] + 324*E^8*Defer[Int][1/(x*Log[x]^2*Log[x^2]), x] + 54*E^12*Defer[Int][1/(x*Log[x]^2*Log[x^2]), x] - (81*E^8*
(8 + E^4)*Defer[Int][1/(x*Log[x]^2*Log[x^2]), x])/2 - 972*E^8*Defer[Int][1/((2 + 3*x)^2*Log[x]^2*Log[x^2]), x]
- 81*E^12*Defer[Int][1/((2 + 3*x)^2*Log[x]^2*Log[x^2]), x] + 81*E^8*(8 + E^4)*Defer[Int][1/((2 + 3*x)^2*Log[x
]^2*Log[x^2]), x] - 972*E^8*Defer[Int][1/((2 + 3*x)*Log[x]^2*Log[x^2]), x] - 162*E^12*Defer[Int][1/((2 + 3*x)*
Log[x]^2*Log[x^2]), x] + (243*E^8*(8 + E^4)*Defer[Int][1/((2 + 3*x)*Log[x]^2*Log[x^2]), x])/2 - 12*E^12*Defer[
Int][1/(x^4*Log[x]*Log[x^2]), x] + 12*E^12*Defer[Int][1/(x^3*Log[x]*Log[x^2]), x] - 9*E^12*Defer[Int][1/(x^2*L
og[x]*Log[x^2]), x] + 81*E^12*Defer[Int][1/((2 + 3*x)^2*Log[x]*Log[x^2]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 36, normalized size = 1.20
Antiderivative was successfully verified.
[In]
Integrate[((-1024*x^4 - 1536*x^5)*Log[x] + E^4*(-1024*x^3 - 1536*x^4)*Log[x]^2 + E^8*(-384*x^2 - 576*x^3)*Log[
x]^3 + E^12*(-64*x - 96*x^2)*Log[x]^4 + E^16*(-4 - 6*x)*Log[x]^5 + (-2048*x^4 - 3072*x^5 + (-768*x^5 + E^4*(-1
536*x^3 - 2304*x^4))*Log[x] + (E^8*(-384*x^2 - 576*x^3) + E^4*(-512*x^3 - 1536*x^4))*Log[x]^2 + (E^12*(-32*x -
48*x^2) + E^8*(-384*x^2 - 864*x^3))*Log[x]^3 + E^12*(-96*x - 192*x^2)*Log[x]^4 + E^16*(-8 - 15*x)*Log[x]^5)*L
og[x^2])/((8*x^5 + 24*x^6 + 18*x^7)*Log[x]^5*Log[x^2]^2),x]
[Out]
(4*x + E^4*Log[x])^4/(2*x^4*(2 + 3*x)*Log[x]^4*Log[x^2])
________________________________________________________________________________________
fricas [B] time = 0.97, size = 61, normalized size = 2.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-15*x-8)*exp(4)^4*log(x)^5+(-192*x^2-96*x)*exp(4)^3*log(x)^4+((-48*x^2-32*x)*exp(4)^3+(-864*x^3-3
84*x^2)*exp(4)^2)*log(x)^3+((-576*x^3-384*x^2)*exp(4)^2+(-1536*x^4-512*x^3)*exp(4))*log(x)^2+((-2304*x^4-1536*
x^3)*exp(4)-768*x^5)*log(x)-3072*x^5-2048*x^4)*log(x^2)+(-6*x-4)*exp(4)^4*log(x)^5+(-96*x^2-64*x)*exp(4)^3*log
(x)^4+(-576*x^3-384*x^2)*exp(4)^2*log(x)^3+(-1536*x^4-1024*x^3)*exp(4)*log(x)^2+(-1536*x^5-1024*x^4)*log(x))/(
18*x^7+24*x^6+8*x^5)/log(x)^5/log(x^2)^2,x, algorithm="fricas")
[Out]
1/4*(256*x^3*e^4*log(x) + 96*x^2*e^8*log(x)^2 + 16*x*e^12*log(x)^3 + e^16*log(x)^4 + 256*x^4)/((3*x^5 + 2*x^4)
*log(x)^5)
________________________________________________________________________________________
giac [B] time = 0.33, size = 65, normalized size = 2.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-15*x-8)*exp(4)^4*log(x)^5+(-192*x^2-96*x)*exp(4)^3*log(x)^4+((-48*x^2-32*x)*exp(4)^3+(-864*x^3-3
84*x^2)*exp(4)^2)*log(x)^3+((-576*x^3-384*x^2)*exp(4)^2+(-1536*x^4-512*x^3)*exp(4))*log(x)^2+((-2304*x^4-1536*
x^3)*exp(4)-768*x^5)*log(x)-3072*x^5-2048*x^4)*log(x^2)+(-6*x-4)*exp(4)^4*log(x)^5+(-96*x^2-64*x)*exp(4)^3*log
(x)^4+(-576*x^3-384*x^2)*exp(4)^2*log(x)^3+(-1536*x^4-1024*x^3)*exp(4)*log(x)^2+(-1536*x^5-1024*x^4)*log(x))/(
18*x^7+24*x^6+8*x^5)/log(x)^5/log(x^2)^2,x, algorithm="giac")
[Out]
1/4*(256*x^3*e^4*log(x) + 96*x^2*e^8*log(x)^2 + 16*x*e^12*log(x)^3 + e^16*log(x)^4 + 256*x^4)/(3*x^5*log(x)^5
+ 2*x^4*log(x)^5)
________________________________________________________________________________________
maple [C] time = 0.72, size = 114, normalized size = 3.80
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-15*x-8)*exp(4)^4*ln(x)^5+(-192*x^2-96*x)*exp(4)^3*ln(x)^4+((-48*x^2-32*x)*exp(4)^3+(-864*x^3-384*x^2)*
exp(4)^2)*ln(x)^3+((-576*x^3-384*x^2)*exp(4)^2+(-1536*x^4-512*x^3)*exp(4))*ln(x)^2+((-2304*x^4-1536*x^3)*exp(4
)-768*x^5)*ln(x)-3072*x^5-2048*x^4)*ln(x^2)+(-6*x-4)*exp(4)^4*ln(x)^5+(-96*x^2-64*x)*exp(4)^3*ln(x)^4+(-576*x^
3-384*x^2)*exp(4)^2*ln(x)^3+(-1536*x^4-1024*x^3)*exp(4)*ln(x)^2+(-1536*x^5-1024*x^4)*ln(x))/(18*x^7+24*x^6+8*x
^5)/ln(x)^5/ln(x^2)^2,x,method=_RETURNVERBOSE)
[Out]
(exp(16)*ln(x)^4+16*exp(12)*x*ln(x)^3+96*exp(8)*x^2*ln(x)^2+256*exp(4)*x^3*ln(x)+256*x^4)/ln(x)^4/(-I*Pi*csgn(
I*x)^2*csgn(I*x^2)+2*I*Pi*csgn(I*x)*csgn(I*x^2)^2-I*Pi*csgn(I*x^2)^3+4*ln(x))/x^4/(3*x+2)
________________________________________________________________________________________
maxima [B] time = 0.47, size = 61, normalized size = 2.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-15*x-8)*exp(4)^4*log(x)^5+(-192*x^2-96*x)*exp(4)^3*log(x)^4+((-48*x^2-32*x)*exp(4)^3+(-864*x^3-3
84*x^2)*exp(4)^2)*log(x)^3+((-576*x^3-384*x^2)*exp(4)^2+(-1536*x^4-512*x^3)*exp(4))*log(x)^2+((-2304*x^4-1536*
x^3)*exp(4)-768*x^5)*log(x)-3072*x^5-2048*x^4)*log(x^2)+(-6*x-4)*exp(4)^4*log(x)^5+(-96*x^2-64*x)*exp(4)^3*log
(x)^4+(-576*x^3-384*x^2)*exp(4)^2*log(x)^3+(-1536*x^4-1024*x^3)*exp(4)*log(x)^2+(-1536*x^5-1024*x^4)*log(x))/(
18*x^7+24*x^6+8*x^5)/log(x)^5/log(x^2)^2,x, algorithm="maxima")
[Out]
1/4*(256*x^3*e^4*log(x) + 96*x^2*e^8*log(x)^2 + 16*x*e^12*log(x)^3 + e^16*log(x)^4 + 256*x^4)/((3*x^5 + 2*x^4)
*log(x)^5)
________________________________________________________________________________________
mupad [B] time = 6.45, size = 892, normalized size = 29.73 result too large to
display
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(x)*(1024*x^4 + 1536*x^5) + log(x^2)*(log(x)^2*(exp(8)*(384*x^2 + 576*x^3) + exp(4)*(512*x^3 + 1536*x
^4)) + log(x)*(exp(4)*(1536*x^3 + 2304*x^4) + 768*x^5) + log(x)^3*(exp(12)*(32*x + 48*x^2) + exp(8)*(384*x^2 +
864*x^3)) + 2048*x^4 + 3072*x^5 + exp(16)*log(x)^5*(15*x + 8) + exp(12)*log(x)^4*(96*x + 192*x^2)) + exp(16)*
log(x)^5*(6*x + 4) + exp(12)*log(x)^4*(64*x + 96*x^2) + exp(8)*log(x)^3*(384*x^2 + 576*x^3) + exp(4)*log(x)^2*
(1024*x^3 + 1536*x^4))/(log(x^2)^2*log(x)^5*(8*x^5 + 24*x^6 + 18*x^7)),x)
[Out]
((4*exp(16)*(log(x^2) - 2*log(x))^4 + 8*exp(16)*(log(x^2) - 2*log(x))^5 + 12288*x^5*(log(x^2) - 2*log(x)) + 16
384*x^4 + 24576*x^5 - 8192*x^3*exp(4)*(log(x^2) - 2*log(x)) - 12288*x^4*exp(4)*(log(x^2) - 2*log(x)) - 128*x*e
xp(12)*(log(x^2) - 2*log(x))^3 - 192*x*exp(12)*(log(x^2) - 2*log(x))^4 + 6*x*exp(16)*(log(x^2) - 2*log(x))^4 +
15*x*exp(16)*(log(x^2) - 2*log(x))^5 - 4096*x^3*exp(4)*(log(x^2) - 2*log(x))^2 - 12288*x^4*exp(4)*(log(x^2) -
2*log(x))^2 + 1536*x^2*exp(8)*(log(x^2) - 2*log(x))^2 + 1536*x^2*exp(8)*(log(x^2) - 2*log(x))^3 + 2304*x^3*ex
p(8)*(log(x^2) - 2*log(x))^2 + 3456*x^3*exp(8)*(log(x^2) - 2*log(x))^3 - 192*x^2*exp(12)*(log(x^2) - 2*log(x))
^3 - 384*x^2*exp(12)*(log(x^2) - 2*log(x))^4)/(4*x^4*(3*x + 2)^2*(log(x^2) - 2*log(x))^4) + (log(x)*(8*exp(16)
*(log(x^2) - 2*log(x))^4 + 12288*x^5 - 4096*x^3*exp(4)*(log(x^2) - 2*log(x)) - 12288*x^4*exp(4)*(log(x^2) - 2*
log(x)) - 192*x*exp(12)*(log(x^2) - 2*log(x))^3 + 15*x*exp(16)*(log(x^2) - 2*log(x))^4 + 1536*x^2*exp(8)*(log(
x^2) - 2*log(x))^2 + 3456*x^3*exp(8)*(log(x^2) - 2*log(x))^2 - 384*x^2*exp(12)*(log(x^2) - 2*log(x))^3))/(2*x^
4*(3*x + 2)^2*(log(x^2) - 2*log(x))^4))/log(x^2) - (8*exp(16)*(log(x^2) - 2*log(x))^4 - x*(192*exp(12)*(log(x^
2) - 2*log(x))^3 - 15*exp(16)*(log(x^2) - 2*log(x))^4) + x^3*(3456*exp(8)*(log(x^2) - 2*log(x))^2 - 4096*exp(4
)*(log(x^2) - 2*log(x))) + x^2*(1536*exp(8)*(log(x^2) - 2*log(x))^2 - 384*exp(12)*(log(x^2) - 2*log(x))^3) + 1
2288*x^5 - 12288*x^4*exp(4)*(log(x^2) - 2*log(x)))/(16*x^4*(log(x^2) - 2*log(x))^4 + 48*x^5*(log(x^2) - 2*log(
x))^4 + 36*x^6*(log(x^2) - 2*log(x))^4) + 128/(log(x)^4*(3*x + 2)*(log(x^2) - 2*log(x))) + (8*(exp(12)*(log(x^
2) - 2*log(x))^3 - 128*x^3 + 64*x^2*exp(4)*(log(x^2) - 2*log(x)) - 12*x*exp(8)*(log(x^2) - 2*log(x))^2))/(x^3*
log(x)*(3*x + 2)*(log(x^2) - 2*log(x))^4) + (16*(3*exp(8)*(log(x^2) - 2*log(x))^2 + 32*x^2 - 16*x*exp(4)*(log(
x^2) - 2*log(x))))/(x^2*log(x)^2*(3*x + 2)*(log(x^2) - 2*log(x))^3) - (128*(2*x - exp(4)*(log(x^2) - 2*log(x))
))/(x*log(x)^3*(3*x + 2)*(log(x^2) - 2*log(x))^2)
________________________________________________________________________________________
sympy [B] time = 0.47, size = 65, normalized size = 2.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-15*x-8)*exp(4)**4*ln(x)**5+(-192*x**2-96*x)*exp(4)**3*ln(x)**4+((-48*x**2-32*x)*exp(4)**3+(-864*
x**3-384*x**2)*exp(4)**2)*ln(x)**3+((-576*x**3-384*x**2)*exp(4)**2+(-1536*x**4-512*x**3)*exp(4))*ln(x)**2+((-2
304*x**4-1536*x**3)*exp(4)-768*x**5)*ln(x)-3072*x**5-2048*x**4)*ln(x**2)+(-6*x-4)*exp(4)**4*ln(x)**5+(-96*x**2
-64*x)*exp(4)**3*ln(x)**4+(-576*x**3-384*x**2)*exp(4)**2*ln(x)**3+(-1536*x**4-1024*x**3)*exp(4)*ln(x)**2+(-153
6*x**5-1024*x**4)*ln(x))/(18*x**7+24*x**6+8*x**5)/ln(x)**5/ln(x**2)**2,x)
[Out]
(256*x**4 + 256*x**3*exp(4)*log(x) + 96*x**2*exp(8)*log(x)**2 + 16*x*exp(12)*log(x)**3 + exp(16)*log(x)**4)/((
12*x**5 + 8*x**4)*log(x)**5)
________________________________________________________________________________________