Optimal. Leaf size=21 \[ 8-\left (1+x+\frac {\log \left (\frac {e^2}{2}\right )}{e^3}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 20, normalized size of antiderivative = 0.95, number of steps used = 2, number of rules used = 1, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {12} \begin {gather*} -(x+1)^2-\frac {2 x (2-\log (2))}{e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^3 (-2-2 x)-2 \log \left (\frac {e^2}{2}\right )\right ) \, dx}{e^3}\\ &=-(1+x)^2-\frac {2 x (2-\log (2))}{e^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 26, normalized size = 1.24 \begin {gather*} \frac {-4 x-2 e^3 x-e^3 x^2+x \log (4)}{e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 23, normalized size = 1.10 \begin {gather*} -{\left ({\left (x^{2} + 2 \, x\right )} e^{3} - 2 \, x \log \relax (2) + 4 \, x\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 23, normalized size = 1.10 \begin {gather*} -{\left ({\left (x^{2} + 2 \, x\right )} e^{3} + 2 \, x \log \left (\frac {1}{2} \, e^{2}\right )\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 1.05
method | result | size |
norman | \(-x^{2}-2 \left ({\mathrm e}^{3}-\ln \relax (2)+2\right ) {\mathrm e}^{-3} x\) | \(22\) |
risch | \(-x^{2}-2 x +2 \,{\mathrm e}^{-3} \ln \relax (2) x -4 x \,{\mathrm e}^{-3}\) | \(22\) |
gosper | \(-x \left (x \,{\mathrm e}^{3}+2 \,{\mathrm e}^{3}+2 \ln \left (\frac {{\mathrm e}^{2}}{2}\right )\right ) {\mathrm e}^{-3}\) | \(24\) |
default | \({\mathrm e}^{-3} \left (-2 \ln \left (\frac {{\mathrm e}^{2}}{2}\right ) x +{\mathrm e}^{3} \left (-x^{2}-2 x \right )\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 23, normalized size = 1.10 \begin {gather*} -{\left ({\left (x^{2} + 2 \, x\right )} e^{3} + 2 \, x \log \left (\frac {1}{2} \, e^{2}\right )\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.52, size = 20, normalized size = 0.95 \begin {gather*} -\frac {{\mathrm {e}}^{-6}\,{\left (\ln \left (\frac {{\mathrm {e}}^4}{4}\right )+{\mathrm {e}}^3\,\left (2\,x+2\right )\right )}^2}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 19, normalized size = 0.90 \begin {gather*} - x^{2} + \frac {x \left (- 2 e^{3} - 4 + 2 \log {\relax (2 )}\right )}{e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________