Optimal. Leaf size=28 \[ \frac {e^{5 x} \left (x+x \left (x+x^2\right )\right )}{x \log (5) \log \left (\frac {1}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{5 x} \left (1+x+x^2\right )+e^{5 x} \left (6 x+7 x^2+5 x^3\right ) \log \left (\frac {1}{x}\right )}{x \log (5) \log ^2\left (\frac {1}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{5 x} \left (1+x+x^2\right )+e^{5 x} \left (6 x+7 x^2+5 x^3\right ) \log \left (\frac {1}{x}\right )}{x \log ^2\left (\frac {1}{x}\right )} \, dx}{\log (5)}\\ &=\frac {\int \frac {e^{5 x} \left (1+x+x^2+6 x \log \left (\frac {1}{x}\right )+7 x^2 \log \left (\frac {1}{x}\right )+5 x^3 \log \left (\frac {1}{x}\right )\right )}{x \log ^2\left (\frac {1}{x}\right )} \, dx}{\log (5)}\\ &=\frac {\int \frac {e^{5 x} \left (1+x+x^2+x \left (6+7 x+5 x^2\right ) \log \left (\frac {1}{x}\right )\right )}{x \log ^2\left (\frac {1}{x}\right )} \, dx}{\log (5)}\\ &=\frac {\int \left (\frac {e^{5 x} \left (1+x+x^2\right )}{x \log ^2\left (\frac {1}{x}\right )}+\frac {e^{5 x} \left (6+7 x+5 x^2\right )}{\log \left (\frac {1}{x}\right )}\right ) \, dx}{\log (5)}\\ &=\frac {\int \frac {e^{5 x} \left (1+x+x^2\right )}{x \log ^2\left (\frac {1}{x}\right )} \, dx}{\log (5)}+\frac {\int \frac {e^{5 x} \left (6+7 x+5 x^2\right )}{\log \left (\frac {1}{x}\right )} \, dx}{\log (5)}\\ &=\frac {\int \left (\frac {e^{5 x}}{\log ^2\left (\frac {1}{x}\right )}+\frac {e^{5 x}}{x \log ^2\left (\frac {1}{x}\right )}+\frac {e^{5 x} x}{\log ^2\left (\frac {1}{x}\right )}\right ) \, dx}{\log (5)}+\frac {\int \left (\frac {6 e^{5 x}}{\log \left (\frac {1}{x}\right )}+\frac {7 e^{5 x} x}{\log \left (\frac {1}{x}\right )}+\frac {5 e^{5 x} x^2}{\log \left (\frac {1}{x}\right )}\right ) \, dx}{\log (5)}\\ &=\frac {\int \frac {e^{5 x}}{\log ^2\left (\frac {1}{x}\right )} \, dx}{\log (5)}+\frac {\int \frac {e^{5 x}}{x \log ^2\left (\frac {1}{x}\right )} \, dx}{\log (5)}+\frac {\int \frac {e^{5 x} x}{\log ^2\left (\frac {1}{x}\right )} \, dx}{\log (5)}+\frac {5 \int \frac {e^{5 x} x^2}{\log \left (\frac {1}{x}\right )} \, dx}{\log (5)}+\frac {6 \int \frac {e^{5 x}}{\log \left (\frac {1}{x}\right )} \, dx}{\log (5)}+\frac {7 \int \frac {e^{5 x} x}{\log \left (\frac {1}{x}\right )} \, dx}{\log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 22, normalized size = 0.79 \begin {gather*} \frac {e^{5 x} \left (1+x+x^2\right )}{\log (5) \log \left (\frac {1}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 21, normalized size = 0.75 \begin {gather*} \frac {{\left (x^{2} + x + 1\right )} e^{\left (5 \, x\right )}}{\log \relax (5) \log \left (\frac {1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 29, normalized size = 1.04 \begin {gather*} -\frac {x^{2} e^{\left (5 \, x\right )} + x e^{\left (5 \, x\right )} + e^{\left (5 \, x\right )}}{\log \relax (5) \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 0.75
method | result | size |
risch | \(-\frac {\left (x^{2}+x +1\right ) {\mathrm e}^{5 x}}{\ln \relax (5) \ln \relax (x )}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 20, normalized size = 0.71 \begin {gather*} -\frac {{\left (x^{2} + x + 1\right )} e^{\left (5 \, x\right )}}{\log \relax (5) \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.26, size = 21, normalized size = 0.75 \begin {gather*} \frac {{\mathrm {e}}^{5\,x}\,\left (x^2+x+1\right )}{\ln \left (\frac {1}{x}\right )\,\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 19, normalized size = 0.68 \begin {gather*} \frac {\left (x^{2} + x + 1\right ) e^{5 x}}{\log {\relax (5 )} \log {\left (\frac {1}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________