3.85.60 ex/4(48x)+ex/4(7x2x2)log(15xlog(5))20xdx

Optimal. Leaf size=24 15ex/4(12x)log(15xlog(5))

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 40, normalized size of antiderivative = 1.67, number of steps used = 14, number of rules used = 7, integrand size = 46, number of rulesintegrand size = 0.152, Rules used = {12, 14, 2194, 2178, 2554, 2176, 2199} 15ex/4log(15xlog(5))25ex/4xlog(15xlog(5))

Antiderivative was successfully verified.

[In]

Int[(E^(x/4)*(4 - 8*x) + E^(x/4)*(-7*x - 2*x^2)*Log[(x*Log[5])/5])/(20*x),x]

[Out]

(E^(x/4)*Log[(x*Log[5])/5])/5 - (2*E^(x/4)*x*Log[(x*Log[5])/5])/5

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2199

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !$UseGamma === True

Rule 2554

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]

Rubi steps

integral=120ex/4(48x)+ex/4(7x2x2)log(15xlog(5))xdx=120(8ex/4+4ex/4x7ex/4log(15xlog(5))2ex/4xlog(15xlog(5)))dx=(110ex/4xlog(15xlog(5))dx)+15ex/4xdx720ex/4log(15xlog(5))dx25ex/4dx=8ex/45+Ei(x4)5+15ex/4log(15xlog(5))25ex/4xlog(15xlog(5))+1104ex/4(4+x)xdx+7204ex/4xdx=8ex/45+Ei(x4)5+15ex/4log(15xlog(5))25ex/4xlog(15xlog(5))+25ex/4(4+x)xdx+75ex/4xdx=8ex/45+8Ei(x4)5+15ex/4log(15xlog(5))25ex/4xlog(15xlog(5))+25(ex/44ex/4x)dx=8ex/45+8Ei(x4)5+15ex/4log(15xlog(5))25ex/4xlog(15xlog(5))+25ex/4dx85ex/4xdx=15ex/4log(15xlog(5))25ex/4xlog(15xlog(5))

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 24, normalized size = 1.00 15ex/4(1+2x)log(15xlog(5))

Antiderivative was successfully verified.

[In]

Integrate[(E^(x/4)*(4 - 8*x) + E^(x/4)*(-7*x - 2*x^2)*Log[(x*Log[5])/5])/(20*x),x]

[Out]

-1/5*(E^(x/4)*(-1 + 2*x)*Log[(x*Log[5])/5])

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 17, normalized size = 0.71 15(2x1)e(14x)log(15xlog(5))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/20*((-2*x^2-7*x)*exp(1/4*x)*log(1/5*x*log(5))+(-8*x+4)*exp(1/4*x))/x,x, algorithm="fricas")

[Out]

-1/5*(2*x - 1)*e^(1/4*x)*log(1/5*x*log(5))

________________________________________________________________________________________

giac [B]  time = 0.18, size = 41, normalized size = 1.71 25xe(14x)log(5)25xe(14x)log(xlog(5))15e(14x)log(5)+15e(14x)log(xlog(5))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/20*((-2*x^2-7*x)*exp(1/4*x)*log(1/5*x*log(5))+(-8*x+4)*exp(1/4*x))/x,x, algorithm="giac")

[Out]

2/5*x*e^(1/4*x)*log(5) - 2/5*x*e^(1/4*x)*log(x*log(5)) - 1/5*e^(1/4*x)*log(5) + 1/5*e^(1/4*x)*log(x*log(5))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 18, normalized size = 0.75




method result size



risch ex4(2x1)ln(xln(5)5)5 18
norman ex4ln(xln(5)5)52xex4ln(xln(5)5)5 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/20*((-2*x^2-7*x)*exp(1/4*x)*ln(1/5*x*ln(5))+(-8*x+4)*exp(1/4*x))/x,x,method=_RETURNVERBOSE)

[Out]

-1/5*exp(1/4*x)*(2*x-1)*ln(1/5*x*ln(5))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 25(x4)e(14x)log(x)75e(14x)log(15xlog(5))+85Ei(14x)85e(14x)+110(x2(log(5)log(log(5)))+4x16)e(14x)xdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/20*((-2*x^2-7*x)*exp(1/4*x)*log(1/5*x*log(5))+(-8*x+4)*exp(1/4*x))/x,x, algorithm="maxima")

[Out]

-2/5*(x - 4)*e^(1/4*x)*log(x) - 7/5*e^(1/4*x)*log(1/5*x*log(5)) + 8/5*Ei(1/4*x) - 8/5*e^(1/4*x) + 1/10*integra
te((x^2*(log(5) - log(log(5))) + 4*x - 16)*e^(1/4*x)/x, x)

________________________________________________________________________________________

mupad [B]  time = 5.41, size = 21, normalized size = 0.88 ex/4(2x1)(ln(ln(5))ln(5)+ln(x))5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((exp(x/4)*(8*x - 4))/20 + (exp(x/4)*log((x*log(5))/5)*(7*x + 2*x^2))/20)/x,x)

[Out]

-(exp(x/4)*(2*x - 1)*(log(log(5)) - log(5) + log(x)))/5

________________________________________________________________________________________

sympy [A]  time = 0.32, size = 26, normalized size = 1.08 (2xlog(xlog(5)5)+log(xlog(5)5))ex45

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/20*((-2*x**2-7*x)*exp(1/4*x)*ln(1/5*x*ln(5))+(-8*x+4)*exp(1/4*x))/x,x)

[Out]

(-2*x*log(x*log(5)/5) + log(x*log(5)/5))*exp(x/4)/5

________________________________________________________________________________________