3.85.60
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 40, normalized size of antiderivative = 1.67,
number of steps used = 14, number of rules used = 7, integrand size = 46, = 0.152, Rules used
= {12, 14, 2194, 2178, 2554, 2176, 2199}
Antiderivative was successfully verified.
[In]
Int[(E^(x/4)*(4 - 8*x) + E^(x/4)*(-7*x - 2*x^2)*Log[(x*Log[5])/5])/(20*x),x]
[Out]
(E^(x/4)*Log[(x*Log[5])/5])/5 - (2*E^(x/4)*x*Log[(x*Log[5])/5])/5
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2199
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] && !$UseGamma === True
Rule 2554
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 24, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(E^(x/4)*(4 - 8*x) + E^(x/4)*(-7*x - 2*x^2)*Log[(x*Log[5])/5])/(20*x),x]
[Out]
-1/5*(E^(x/4)*(-1 + 2*x)*Log[(x*Log[5])/5])
________________________________________________________________________________________
fricas [A] time = 0.83, size = 17, normalized size = 0.71
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/20*((-2*x^2-7*x)*exp(1/4*x)*log(1/5*x*log(5))+(-8*x+4)*exp(1/4*x))/x,x, algorithm="fricas")
[Out]
-1/5*(2*x - 1)*e^(1/4*x)*log(1/5*x*log(5))
________________________________________________________________________________________
giac [B] time = 0.18, size = 41, normalized size = 1.71
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/20*((-2*x^2-7*x)*exp(1/4*x)*log(1/5*x*log(5))+(-8*x+4)*exp(1/4*x))/x,x, algorithm="giac")
[Out]
2/5*x*e^(1/4*x)*log(5) - 2/5*x*e^(1/4*x)*log(x*log(5)) - 1/5*e^(1/4*x)*log(5) + 1/5*e^(1/4*x)*log(x*log(5))
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.75
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(1/20*((-2*x^2-7*x)*exp(1/4*x)*ln(1/5*x*ln(5))+(-8*x+4)*exp(1/4*x))/x,x,method=_RETURNVERBOSE)
[Out]
-1/5*exp(1/4*x)*(2*x-1)*ln(1/5*x*ln(5))
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/20*((-2*x^2-7*x)*exp(1/4*x)*log(1/5*x*log(5))+(-8*x+4)*exp(1/4*x))/x,x, algorithm="maxima")
[Out]
-2/5*(x - 4)*e^(1/4*x)*log(x) - 7/5*e^(1/4*x)*log(1/5*x*log(5)) + 8/5*Ei(1/4*x) - 8/5*e^(1/4*x) + 1/10*integra
te((x^2*(log(5) - log(log(5))) + 4*x - 16)*e^(1/4*x)/x, x)
________________________________________________________________________________________
mupad [B] time = 5.41, size = 21, normalized size = 0.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-((exp(x/4)*(8*x - 4))/20 + (exp(x/4)*log((x*log(5))/5)*(7*x + 2*x^2))/20)/x,x)
[Out]
-(exp(x/4)*(2*x - 1)*(log(log(5)) - log(5) + log(x)))/5
________________________________________________________________________________________
sympy [A] time = 0.32, size = 26, normalized size = 1.08
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/20*((-2*x**2-7*x)*exp(1/4*x)*ln(1/5*x*ln(5))+(-8*x+4)*exp(1/4*x))/x,x)
[Out]
(-2*x*log(x*log(5)/5) + log(x*log(5)/5))*exp(x/4)/5
________________________________________________________________________________________