Optimal. Leaf size=38 \[ -3-e^{-x} \left (-3-x+\frac {4-x^2}{2-x^2}-x \log ^2(5)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (-8 x+2 x^2+4 x^3-x^4-x^5+\left (4-4 x-4 x^2+4 x^3+x^4-x^5\right ) \log ^2(5)\right )}{4-4 x^2+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-8 x+2 x^2+4 x^3-x^4-x^5+\left (4-4 x-4 x^2+4 x^3+x^4-x^5\right ) \log ^2(5)\right )}{\left (-2+x^2\right )^2} \, dx\\ &=\int \left (-\frac {4 e^{-x} x}{\left (-2+x^2\right )^2}-\frac {2 e^{-x}}{-2+x^2}+e^{-x} \left (-1+\log ^2(5)\right )-e^{-x} x \left (1+\log ^2(5)\right )\right ) \, dx\\ &=-\left (2 \int \frac {e^{-x}}{-2+x^2} \, dx\right )-4 \int \frac {e^{-x} x}{\left (-2+x^2\right )^2} \, dx+\left (-1-\log ^2(5)\right ) \int e^{-x} x \, dx+\left (-1+\log ^2(5)\right ) \int e^{-x} \, dx\\ &=e^{-x} \left (1-\log ^2(5)\right )+e^{-x} x \left (1+\log ^2(5)\right )-2 \int \left (-\frac {e^{-x}}{2 \sqrt {2} \left (\sqrt {2}-x\right )}-\frac {e^{-x}}{2 \sqrt {2} \left (\sqrt {2}+x\right )}\right ) \, dx-4 \int \frac {e^{-x} x}{\left (-2+x^2\right )^2} \, dx+\left (-1-\log ^2(5)\right ) \int e^{-x} \, dx\\ &=e^{-x} \left (1-\log ^2(5)\right )+e^{-x} \left (1+\log ^2(5)\right )+e^{-x} x \left (1+\log ^2(5)\right )-4 \int \frac {e^{-x} x}{\left (-2+x^2\right )^2} \, dx+\frac {\int \frac {e^{-x}}{\sqrt {2}-x} \, dx}{\sqrt {2}}+\frac {\int \frac {e^{-x}}{\sqrt {2}+x} \, dx}{\sqrt {2}}\\ &=\frac {e^{\sqrt {2}} \text {Ei}\left (-\sqrt {2}-x\right )}{\sqrt {2}}-\frac {e^{-\sqrt {2}} \text {Ei}\left (\sqrt {2}-x\right )}{\sqrt {2}}+e^{-x} \left (1-\log ^2(5)\right )+e^{-x} \left (1+\log ^2(5)\right )+e^{-x} x \left (1+\log ^2(5)\right )-4 \int \frac {e^{-x} x}{\left (-2+x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 25, normalized size = 0.66 \begin {gather*} e^{-x} \left (2+\frac {2}{-2+x^2}+x \left (1+\log ^2(5)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 37, normalized size = 0.97 \begin {gather*} \frac {{\left (x^{3} + {\left (x^{3} - 2 \, x\right )} \log \relax (5)^{2} + 2 \, x^{2} - 2 \, x - 2\right )} e^{\left (-x\right )}}{x^{2} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 62, normalized size = 1.63 \begin {gather*} \frac {x^{3} e^{\left (-x\right )} \log \relax (5)^{2} + x^{3} e^{\left (-x\right )} - 2 \, x e^{\left (-x\right )} \log \relax (5)^{2} + 2 \, x^{2} e^{\left (-x\right )} - 2 \, x e^{\left (-x\right )} - 2 \, e^{\left (-x\right )}}{x^{2} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 37, normalized size = 0.97
method | result | size |
default | \({\mathrm e}^{-x}+\left (x +1\right ) {\mathrm e}^{-x}+\frac {2 \,{\mathrm e}^{-x}}{x^{2}-2}+\ln \relax (5)^{2} {\mathrm e}^{-x} x\) | \(37\) |
norman | \(\frac {\left (-2+\left (-2 \ln \relax (5)^{2}-2\right ) x +\left (\ln \relax (5)^{2}+1\right ) x^{3}+2 x^{2}\right ) {\mathrm e}^{-x}}{x^{2}-2}\) | \(40\) |
gosper | \(\frac {\left (x^{3} \ln \relax (5)^{2}-2 x \ln \relax (5)^{2}+x^{3}+2 x^{2}-2 x -2\right ) {\mathrm e}^{-x}}{x^{2}-2}\) | \(41\) |
risch | \(\frac {\left (x^{3} \ln \relax (5)^{2}-2 x \ln \relax (5)^{2}+x^{3}+2 x^{2}-2 x -2\right ) {\mathrm e}^{-x}}{x^{2}-2}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 38, normalized size = 1.00 \begin {gather*} \frac {{\left ({\left (\log \relax (5)^{2} + 1\right )} x^{3} - 2 \, {\left (\log \relax (5)^{2} + 1\right )} x + 2 \, x^{2} - 2\right )} e^{\left (-x\right )}}{x^{2} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.29, size = 28, normalized size = 0.74 \begin {gather*} {\mathrm {e}}^{-x}\,\left (x+x\,{\ln \relax (5)}^2+2\right )+\frac {2\,{\mathrm {e}}^{-x}}{x^2-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 37, normalized size = 0.97 \begin {gather*} \frac {\left (x^{3} + x^{3} \log {\relax (5 )}^{2} + 2 x^{2} - 2 x \log {\relax (5 )}^{2} - 2 x - 2\right ) e^{- x}}{x^{2} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________