3.85.76 e102x(92164608x+(4608+6912x4608x2+e5+x(576x288x2)+e5+x(19296x)log(2x))log(x)+(e5+x(96x+576x2288x3)+e5+x(192+96x96x2)log(2x))log2(x)+(e10+2x(12x2+9x3)+2e10+2xxlog(2x)+e10+2x(2x)log2(2x))log3(x))(2x2+x3)log3(x)dx

Optimal. Leaf size=30 (log(2x)+3(x+16e5xlog(x)))2x

________________________________________________________________________________________

Rubi [F]  time = 14.58, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e102x(92164608x+(4608+6912x4608x2+e5+x(576x288x2)+e5+x(19296x)log(2x))log(x)+(e5+x(96x+576x2288x3)+e5+x(192+96x96x2)log(2x))log2(x)+(e10+2x(12x2+9x3)+2e10+2xxlog(2x)+e10+2x(2x)log2(2x))log3(x))(2x2+x3)log3(x)dx

Verification is not applicable to the result.

[In]

Int[(E^(-10 - 2*x)*(9216 - 4608*x + (4608 + 6912*x - 4608*x^2 + E^(5 + x)*(576*x - 288*x^2) + E^(5 + x)*(192 -
 96*x)*Log[2 - x])*Log[x] + (E^(5 + x)*(96*x + 576*x^2 - 288*x^3) + E^(5 + x)*(192 + 96*x - 96*x^2)*Log[2 - x]
)*Log[x]^2 + (E^(10 + 2*x)*(-12*x^2 + 9*x^3) + 2*E^(10 + 2*x)*x*Log[2 - x] + E^(10 + 2*x)*(2 - x)*Log[2 - x]^2
)*Log[x]^3))/((-2*x^2 + x^3)*Log[x]^3),x]

[Out]

9*x + 6*Log[2 - x] + Log[2 - x]^2/2 + ((2 - x)*Log[2 - x]^2)/(2*x) + (2304*E^(-10 - 2*x))/(x*Log[x]^2) - 288*D
efer[Int][E^(-5 - x)/(x*Log[x]^2), x] - 96*Defer[Int][(E^(-5 - x)*Log[2 - x])/(x^2*Log[x]^2), x] - 288*Defer[I
nt][E^(-5 - x)/Log[x], x] + 48*Defer[Int][E^(-5 - x)/((-2 + x)*Log[x]), x] - 48*Defer[Int][E^(-5 - x)/(x*Log[x
]), x] - 96*Defer[Int][(E^(-5 - x)*Log[2 - x])/(x^2*Log[x]), x] - 96*Defer[Int][(E^(-5 - x)*Log[2 - x])/(x*Log
[x]), x]

Rubi steps

integral=e102x(92164608x+(4608+6912x4608x2+e5+x(576x288x2)+e5+x(19296x)log(2x))log(x)+(e5+x(96x+576x2288x3)+e5+x(192+96x96x2)log(2x))log2(x)+(e10+2x(12x2+9x3)+2e10+2xxlog(2x)+e10+2x(2x)log2(2x))log3(x))(2+x)x2log3(x)dx=(12x2+9x3+2xlog(2x)+2log2(2x)xlog2(2x)(2+x)x22304e102x(2+log(x)+2xlog(x))x2log3(x)96e5x(6x+3x22log(2x)+xlog(2x)xlog(x)6x2log(x)+3x3log(x)2log(2x)log(x)xlog(2x)log(x)+x2log(2x)log(x))(2+x)x2log2(x))dx=(96e5x(6x+3x22log(2x)+xlog(2x)xlog(x)6x2log(x)+3x3log(x)2log(2x)log(x)xlog(2x)log(x)+x2log(2x)log(x))(2+x)x2log2(x)dx)2304e102x(2+log(x)+2xlog(x))x2log3(x)dx+12x2+9x3+2xlog(2x)+2log2(2x)xlog2(2x)(2+x)x2dx=2304e102xxlog2(x)96e5x(((2+x)log(2x)(1+(1+x)log(x)))x(3(2+x)+(16x+3x2)log(x)))(2x)x2log2(x)dx+(3(4+3x)2+x+2log(2x)(2+x)xlog2(2x)x2)dx=2304e102xxlog2(x)+2log(2x)(2+x)xdx+34+3x2+xdx96(e5x(3x+log(2x))x2log2(x)+e5x(x6x2+3x32log(2x)xlog(2x)+x2log(2x))(2+x)x2log(x))dxlog2(2x)x2dx=(2x)log2(2x)2x+2304e102xxlog2(x)+2Subst(log(x)(2x)xdx,x,2x)+3(3+22+x)dx96e5x(3x+log(2x))x2log2(x)dx96e5x(x6x2+3x32log(2x)xlog(2x)+x2log(2x))(2+x)x2log(x)dx+log(2x)xdx=9x+6log(2x)+(2x)log2(2x)2x+2304e102xxlog2(x)+log(2)log(x)96(3e5xxlog2(x)+e5xlog(2x)x2log2(x))dx96(e5x(x+6x23x3+2log(2x)+xlog(2x)x2log(2x))2x2log(x)+e5x(x+6x23x3+2log(2x)+xlog(2x)x2log(2x))4xlog(x)+e5x(x6x2+3x32log(2x)xlog(2x)+x2log(2x))4(2+x)log(x))dx+log(1x2)xdx+Subst(log(x)2xdx,x,2x)+Subst(log(x)xdx,x,2x)=9x+6log(2x)+12log2(2x)+(2x)log2(2x)2x+2304e102xxlog2(x)Li2(x2)24e5x(x+6x23x3+2log(2x)+xlog(2x)x2log(2x))xlog(x)dx24e5x(x6x2+3x32log(2x)xlog(2x)+x2log(2x))(2+x)log(x)dx48e5x(x+6x23x3+2log(2x)+xlog(2x)x2log(2x))x2log(x)dx96e5xlog(2x)x2log2(x)dx288e5xxlog2(x)dx+Subst(log(x2)2xdx,x,2x)=9x+6log(2x)+12log2(2x)+(2x)log2(2x)2x+2304e102xxlog2(x)24(e5xx(2+x)log(x)6e5xx2(2+x)log(x)+3e5xx3(2+x)log(x)2e5xlog(2x)(2+x)log(x)e5xxlog(2x)(2+x)log(x)+e5xx2log(2x)(2+x)log(x))dx24e5x(x+6x23x3+(2+xx2)log(2x))xlog(x)dx48e5x(x+6x23x3+(2+xx2)log(2x))x2log(x)dx96e5xlog(2x)x2log2(x)dx288e5xxlog2(x)dx=9x+6log(2x)+12log2(2x)+(2x)log2(2x)2x+2304e102xxlog2(x)24(e5xlog(x)+6e5xxlog(x)3e5xx2log(x)+e5xlog(2x)log(x)+2e5xlog(2x)xlog(x)e5xxlog(2x)log(x))dx+24e5xx(2+x)log(x)dx+24e5xxlog(2x)(2+x)log(x)dx24e5xx2log(2x)(2+x)log(x)dx48(6e5xlog(x)+e5xxlog(x)3e5xxlog(x)e5xlog(2x)log(x)+2e5xlog(2x)x2log(x)+e5xlog(2x)xlog(x))dx+48e5xlog(2x)(2+x)log(x)dx72e5xx3(2+x)log(x)dx96e5xlog(2x)x2log2(x)dx+144e5xx2(2+x)log(x)dx288e5xxlog2(x)dx=9x+6log(2x)+12log2(2x)+(2x)log2(2x)2x+2304e102xxlog2(x)+24(e5xlog(x)+2e5x(2+x)log(x))dx+24(e5xlog(2x)log(x)+2e5xlog(2x)(2+x)log(x))dx24(2e5xlog(2x)log(x)+4e5xlog(2x)(2+x)log(x)+e5xxlog(2x)log(x))dx24e5xlog(x)dx24e5xlog(2x)log(x)dx+24e5xxlog(2x)log(x)dx48e5xxlog(x)dx+48e5xlog(2x)log(x)dx+48e5xlog(2x)(2+x)log(x)dx2(48e5xlog(2x)xlog(x)dx)72(4e5xlog(x)+8e5x(2+x)log(x)+2e5xxlog(x)+e5xx2log(x))dx+72e5xx2log(x)dx96e5xlog(2x)x2log2(x)dx96e5xlog(2x)x2log(x)dx+144(2e5xlog(x)+4e5x(2+x)log(x)+e5xxlog(x))dx288e5xxlog2(x)dx288e5xlog(x)dx=9x+6log(2x)+12log2(2x)+(2x)log2(2x)2x+2304e102xxlog2(x)+48e5x(2+x)log(x)dx48e5xxlog(x)dx+2(48e5xlog(2x)(2+x)log(x)dx)2(48e5xlog(2x)xlog(x)dx)96e5xlog(2x)x2log2(x)dx96e5xlog(2x)(2+x)log(x)dx96e5xlog(2x)x2log(x)dx288e5xxlog2(x)dx288e5xlog(x)dx

________________________________________________________________________________________

Mathematica [C]  time = 0.31, size = 116, normalized size = 3.87 9x+6log(2x)log(2)log(2x)+log2(2x)x+2304e2(5+x)xlog2(x)+288e5xlog(x)+96e5xlog(2x)xlog(x)log(2)log(x)+log(2x)log(x)+Li2(1x2)+Li2(x2)

Antiderivative was successfully verified.

[In]

Integrate[(E^(-10 - 2*x)*(9216 - 4608*x + (4608 + 6912*x - 4608*x^2 + E^(5 + x)*(576*x - 288*x^2) + E^(5 + x)*
(192 - 96*x)*Log[2 - x])*Log[x] + (E^(5 + x)*(96*x + 576*x^2 - 288*x^3) + E^(5 + x)*(192 + 96*x - 96*x^2)*Log[
2 - x])*Log[x]^2 + (E^(10 + 2*x)*(-12*x^2 + 9*x^3) + 2*E^(10 + 2*x)*x*Log[2 - x] + E^(10 + 2*x)*(2 - x)*Log[2
- x]^2)*Log[x]^3))/((-2*x^2 + x^3)*Log[x]^3),x]

[Out]

9*x + 6*Log[2 - x] - Log[2]*Log[2 - x] + Log[2 - x]^2/x + 2304/(E^(2*(5 + x))*x*Log[x]^2) + (288*E^(-5 - x))/L
og[x] + (96*E^(-5 - x)*Log[2 - x])/(x*Log[x]) - Log[2]*Log[x] + Log[2 - x]*Log[x] + PolyLog[2, 1 - x/2] + Poly
Log[2, x/2]

________________________________________________________________________________________

fricas [B]  time = 0.64, size = 86, normalized size = 2.87 ((9x2e(2x+10)+6xe(2x+10)log(x+2)+e(2x+10)log(x+2)2)log(x)2+96(3xe(x+5)+e(x+5)log(x+2))log(x)+2304)e(2x10)xlog(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2-x)*exp(5+x)^2*log(2-x)^2+2*x*exp(5+x)^2*log(2-x)+(9*x^3-12*x^2)*exp(5+x)^2)*log(x)^3+((-96*x^2+
96*x+192)*exp(5+x)*log(2-x)+(-288*x^3+576*x^2+96*x)*exp(5+x))*log(x)^2+((-96*x+192)*exp(5+x)*log(2-x)+(-288*x^
2+576*x)*exp(5+x)-4608*x^2+6912*x+4608)*log(x)-4608*x+9216)/(x^3-2*x^2)/exp(5+x)^2/log(x)^3,x, algorithm="fric
as")

[Out]

((9*x^2*e^(2*x + 10) + 6*x*e^(2*x + 10)*log(-x + 2) + e^(2*x + 10)*log(-x + 2)^2)*log(x)^2 + 96*(3*x*e^(x + 5)
 + e^(x + 5)*log(-x + 2))*log(x) + 2304)*e^(-2*x - 10)/(x*log(x)^2)

________________________________________________________________________________________

giac [B]  time = 0.17, size = 85, normalized size = 2.83 (9x2e15log(x)2+6xe15log(x2)log(x)2+e15log(x)2log(x+2)2+288xe(x+10)log(x)+96e(x+10)log(x)log(x+2)+2304e(2x+5))e(15)xlog(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2-x)*exp(5+x)^2*log(2-x)^2+2*x*exp(5+x)^2*log(2-x)+(9*x^3-12*x^2)*exp(5+x)^2)*log(x)^3+((-96*x^2+
96*x+192)*exp(5+x)*log(2-x)+(-288*x^3+576*x^2+96*x)*exp(5+x))*log(x)^2+((-96*x+192)*exp(5+x)*log(2-x)+(-288*x^
2+576*x)*exp(5+x)-4608*x^2+6912*x+4608)*log(x)-4608*x+9216)/(x^3-2*x^2)/exp(5+x)^2/log(x)^3,x, algorithm="giac
")

[Out]

(9*x^2*e^15*log(x)^2 + 6*x*e^15*log(x - 2)*log(x)^2 + e^15*log(x)^2*log(-x + 2)^2 + 288*x*e^(-x + 10)*log(x) +
 96*e^(-x + 10)*log(x)*log(-x + 2) + 2304*e^(-2*x + 5))*e^(-15)/(x*log(x)^2)

________________________________________________________________________________________

maple [B]  time = 0.38, size = 93, normalized size = 3.10




method result size



risch ln(2x)2x+96ex5ln(2x)xln(x)+3(2ln(x2)xe2x+10ln(x)2+3ln(x)2x2e2x+10+96ln(x)e5+xx+768)e2x10xln(x)2 93



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((2-x)*exp(5+x)^2*ln(2-x)^2+2*x*exp(5+x)^2*ln(2-x)+(9*x^3-12*x^2)*exp(5+x)^2)*ln(x)^3+((-96*x^2+96*x+192)
*exp(5+x)*ln(2-x)+(-288*x^3+576*x^2+96*x)*exp(5+x))*ln(x)^2+((-96*x+192)*exp(5+x)*ln(2-x)+(-288*x^2+576*x)*exp
(5+x)-4608*x^2+6912*x+4608)*ln(x)-4608*x+9216)/(x^3-2*x^2)/exp(5+x)^2/ln(x)^3,x,method=_RETURNVERBOSE)

[Out]

1/x*ln(2-x)^2+96/x*exp(-x-5)/ln(x)*ln(2-x)+3*(2*ln(x-2)*x*exp(2*x+10)*ln(x)^2+3*ln(x)^2*x^2*exp(2*x+10)+96*ln(
x)*exp(5+x)*x+768)/x*exp(-2*x-10)/ln(x)^2

________________________________________________________________________________________

maxima [B]  time = 0.43, size = 81, normalized size = 2.70 (9x2e10log(x)2+e10log(x)2log(x+2)2+288xe(x+5)log(x)+6(xe10log(x)2+16e(x+5)log(x))log(x+2)+2304e(2x))e(10)xlog(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2-x)*exp(5+x)^2*log(2-x)^2+2*x*exp(5+x)^2*log(2-x)+(9*x^3-12*x^2)*exp(5+x)^2)*log(x)^3+((-96*x^2+
96*x+192)*exp(5+x)*log(2-x)+(-288*x^3+576*x^2+96*x)*exp(5+x))*log(x)^2+((-96*x+192)*exp(5+x)*log(2-x)+(-288*x^
2+576*x)*exp(5+x)-4608*x^2+6912*x+4608)*log(x)-4608*x+9216)/(x^3-2*x^2)/exp(5+x)^2/log(x)^3,x, algorithm="maxi
ma")

[Out]

(9*x^2*e^10*log(x)^2 + e^10*log(x)^2*log(-x + 2)^2 + 288*x*e^(-x + 5)*log(x) + 6*(x*e^10*log(x)^2 + 16*e^(-x +
 5)*log(x))*log(-x + 2) + 2304*e^(-2*x))*e^(-10)/(x*log(x)^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 e2x10((e2x+10(x2)ln(2x)2+2xe2x+10ln(2x)e2x+10(12x29x3))ln(x)3+(ex+5(288x3+576x2+96x)+ex+5ln(2x)(96x2+96x+192))ln(x)2+(6912x+ex+5(576x288x2)4608x2ex+5ln(2x)(96x192)+4608)ln(x)4608x+9216)ln(x)3(2x2x3)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(- 2*x - 10)*(log(x)*(6912*x + exp(x + 5)*(576*x - 288*x^2) - 4608*x^2 - exp(x + 5)*log(2 - x)*(96*x
- 192) + 4608) - 4608*x - log(x)^3*(exp(2*x + 10)*(12*x^2 - 9*x^3) - 2*x*exp(2*x + 10)*log(2 - x) + exp(2*x +
10)*log(2 - x)^2*(x - 2)) + log(x)^2*(exp(x + 5)*(96*x + 576*x^2 - 288*x^3) + exp(x + 5)*log(2 - x)*(96*x - 96
*x^2 + 192)) + 9216))/(log(x)^3*(2*x^2 - x^3)),x)

[Out]

int(-(exp(- 2*x - 10)*(log(x)*(6912*x + exp(x + 5)*(576*x - 288*x^2) - 4608*x^2 - exp(x + 5)*log(2 - x)*(96*x
- 192) + 4608) - 4608*x - log(x)^3*(exp(2*x + 10)*(12*x^2 - 9*x^3) - 2*x*exp(2*x + 10)*log(2 - x) + exp(2*x +
10)*log(2 - x)^2*(x - 2)) + log(x)^2*(exp(x + 5)*(96*x + 576*x^2 - 288*x^3) + exp(x + 5)*log(2 - x)*(96*x - 96
*x^2 + 192)) + 9216))/(log(x)^3*(2*x^2 - x^3)), x)

________________________________________________________________________________________

sympy [B]  time = 0.71, size = 71, normalized size = 2.37 9x+6log(x2)+log(2x)2x+2304xe2x10log(x)+(288x2log(x)2+96xlog(x)2log(2x))ex5x2log(x)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2-x)*exp(5+x)**2*ln(2-x)**2+2*x*exp(5+x)**2*ln(2-x)+(9*x**3-12*x**2)*exp(5+x)**2)*ln(x)**3+((-96*
x**2+96*x+192)*exp(5+x)*ln(2-x)+(-288*x**3+576*x**2+96*x)*exp(5+x))*ln(x)**2+((-96*x+192)*exp(5+x)*ln(2-x)+(-2
88*x**2+576*x)*exp(5+x)-4608*x**2+6912*x+4608)*ln(x)-4608*x+9216)/(x**3-2*x**2)/exp(5+x)**2/ln(x)**3,x)

[Out]

9*x + 6*log(x - 2) + log(2 - x)**2/x + (2304*x*exp(-2*x - 10)*log(x) + (288*x**2*log(x)**2 + 96*x*log(x)**2*lo
g(2 - x))*exp(-x - 5))/(x**2*log(x)**3)

________________________________________________________________________________________