3.85.77 400+16x2+e25(1004x2)243(15625+17500x+6150x2+700x3+25x4)dx

Optimal. Leaf size=23 (4+e25)x6075(x+14(5+x)2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 44, number of rulesintegrand size = 0.091, Rules used = {12, 1680, 1814, 8} 4(4e25)x6075(24(x+7)2)

Antiderivative was successfully verified.

[In]

Int[(-400 + 16*x^2 + E^25*(100 - 4*x^2))/(243*(15625 + 17500*x + 6150*x^2 + 700*x^3 + 25*x^4)),x]

[Out]

(4*(4 - E^25)*x)/(6075*(24 - (7 + x)^2))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1680

Int[(Pq_)*(Q4_)^(p_), x_Symbol] :> With[{a = Coeff[Q4, x, 0], b = Coeff[Q4, x, 1], c = Coeff[Q4, x, 2], d = Co
eff[Q4, x, 3], e = Coeff[Q4, x, 4]}, Subst[Int[SimplifyIntegrand[(Pq /. x -> -(d/(4*e)) + x)*(a + d^4/(256*e^3
) - (b*d)/(8*e) + (c - (3*d^2)/(8*e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2,
0] && NeQ[d, 0]] /; FreeQ[p, x] && PolyQ[Pq, x] && PolyQ[Q4, x, 4] &&  !IGtQ[p, 0]

Rule 1814

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[((a
*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*(p + 1)), Int[(a + b*x^2)^(p + 1)*ExpandToS
um[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]

Rubi steps

integral=1243400+16x2+e25(1004x2)15625+17500x+6150x2+700x3+25x4dx=1243Subst(4(4e25)(2414x+x2)25(24x2)2dx,x,7+x)=(4(4e25))Subst(2414x+x2(24x2)2dx,x,7+x)6075=4(4e25)x6075(24(7+x)2)+(4+e25)Subst(0dx,x,7+x)72900=4(4e25)x6075(24(7+x)2)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 20, normalized size = 0.87 4(4+e25)x6075(25+14x+x2)

Antiderivative was successfully verified.

[In]

Integrate[(-400 + 16*x^2 + E^25*(100 - 4*x^2))/(243*(15625 + 17500*x + 6150*x^2 + 700*x^3 + 25*x^4)),x]

[Out]

(4*(-4 + E^25)*x)/(6075*(25 + 14*x + x^2))

________________________________________________________________________________________

fricas [A]  time = 0.76, size = 20, normalized size = 0.87 4(xe254x)6075(x2+14x+25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/243*((-4*x^2+100)*exp(25)+16*x^2-400)/(25*x^4+700*x^3+6150*x^2+17500*x+15625),x, algorithm="fricas
")

[Out]

4/6075*(x*e^25 - 4*x)/(x^2 + 14*x + 25)

________________________________________________________________________________________

giac [A]  time = 0.20, size = 20, normalized size = 0.87 4(xe254x)6075(x2+14x+25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/243*((-4*x^2+100)*exp(25)+16*x^2-400)/(25*x^4+700*x^3+6150*x^2+17500*x+15625),x, algorithm="giac")

[Out]

4/6075*(x*e^25 - 4*x)/(x^2 + 14*x + 25)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 18, normalized size = 0.78




method result size



gosper 4x(e254)6075(x2+14x+25) 18
norman (166075+4e256075)xx2+14x+25 19
default (4e2516)x6075x2+85050x+151875 20
risch x(4e25251625)243x2+3402x+6075 20



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/243*((-4*x^2+100)*exp(25)+16*x^2-400)/(25*x^4+700*x^3+6150*x^2+17500*x+15625),x,method=_RETURNVERBOSE)

[Out]

4/6075*x*(exp(25)-4)/(x^2+14*x+25)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 17, normalized size = 0.74 4x(e254)6075(x2+14x+25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/243*((-4*x^2+100)*exp(25)+16*x^2-400)/(25*x^4+700*x^3+6150*x^2+17500*x+15625),x, algorithm="maxima
")

[Out]

4/6075*x*(e^25 - 4)/(x^2 + 14*x + 25)

________________________________________________________________________________________

mupad [B]  time = 0.08, size = 19, normalized size = 0.83 4x(e254)6075(x2+14x+25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((exp(25)*(4*x^2 - 100))/243 - (16*x^2)/243 + 400/243)/(17500*x + 6150*x^2 + 700*x^3 + 25*x^4 + 15625),x)

[Out]

(4*x*(exp(25) - 4))/(6075*(14*x + x^2 + 25))

________________________________________________________________________________________

sympy [A]  time = 0.32, size = 17, normalized size = 0.74 x(16+4e25)6075x2+85050x+151875

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/243*((-4*x**2+100)*exp(25)+16*x**2-400)/(25*x**4+700*x**3+6150*x**2+17500*x+15625),x)

[Out]

x*(-16 + 4*exp(25))/(6075*x**2 + 85050*x + 151875)

________________________________________________________________________________________