3.85.82
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [F] time = 10.45, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-3*x^4 + 3*E^((25 + 10*E^3*x + E^6*x^2)/x^2)*x^3*Log[x] + E^((-5 + Log[-x + E^((25 + 10*E^3*x + E^6*x^2)/
x^2)*Log[x]])/3)*(E^((25 + 10*E^3*x + E^6*x^2)/x^2)*x^2 - x^3 + E^((25 + 10*E^3*x + E^6*x^2)/x^2)*(-50 - 10*E^
3*x)*Log[x]))/(-3*x^4 + 3*E^((25 + 10*E^3*x + E^6*x^2)/x^2)*x^3*Log[x]),x]
[Out]
x - Defer[Int][(-x + E^((5 + E^3*x)^2/x^2)*Log[x])^(-2/3), x]/(3*E^(5/3)) + Defer[Int][E^((5 + E^3*x)^2/x^2)/(
x*(-x + E^((5 + E^3*x)^2/x^2)*Log[x])^(2/3)), x]/(3*E^(5/3)) - (50*Defer[Int][(E^((5 + E^3*x)^2/x^2)*Log[x])/(
x^3*(-x + E^((5 + E^3*x)^2/x^2)*Log[x])^(2/3)), x])/(3*E^(5/3)) - (10*Defer[Int][(E^(3 + (5 + E^3*x)^2/x^2)*Lo
g[x])/(x^2*(-x + E^((5 + E^3*x)^2/x^2)*Log[x])^(2/3)), x])/(3*E^(5/3))
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.89, size = 41, normalized size = 1.32
Antiderivative was successfully verified.
[In]
Integrate[(-3*x^4 + 3*E^((25 + 10*E^3*x + E^6*x^2)/x^2)*x^3*Log[x] + E^((-5 + Log[-x + E^((25 + 10*E^3*x + E^6
*x^2)/x^2)*Log[x]])/3)*(E^((25 + 10*E^3*x + E^6*x^2)/x^2)*x^2 - x^3 + E^((25 + 10*E^3*x + E^6*x^2)/x^2)*(-50 -
10*E^3*x)*Log[x]))/(-3*x^4 + 3*E^((25 + 10*E^3*x + E^6*x^2)/x^2)*x^3*Log[x]),x]
[Out]
(3*x + (3*(-x + E^((5 + E^3*x)^2/x^2)*Log[x])^(1/3))/E^(5/3))/3
________________________________________________________________________________________
fricas [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-10*x*exp(3)-50)*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*log(x)+x^2*exp((x^2*exp(3)^2+10*x*exp(3)+
25)/x^2)-x^3)*exp(1/3*log(exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*log(x)-x)-5/3)+3*x^3*exp((x^2*exp(3)^2+10*x*e
xp(3)+25)/x^2)*log(x)-3*x^4)/(3*x^3*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*log(x)-3*x^4),x, algorithm="fricas"
)
[Out]
Exception raised: TypeError >> Error detected within library code: integrate: implementation incomplete (co
nstant residues)
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-10*x*exp(3)-50)*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*log(x)+x^2*exp((x^2*exp(3)^2+10*x*exp(3)+
25)/x^2)-x^3)*exp(1/3*log(exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*log(x)-x)-5/3)+3*x^3*exp((x^2*exp(3)^2+10*x*e
xp(3)+25)/x^2)*log(x)-3*x^4)/(3*x^3*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*log(x)-3*x^4),x, algorithm="giac")
[Out]
integrate(1/3*(3*x^3*e^((x^2*e^6 + 10*x*e^3 + 25)/x^2)*log(x) - 3*x^4 - (x^3 - x^2*e^((x^2*e^6 + 10*x*e^3 + 25
)/x^2) + 10*(x*e^3 + 5)*e^((x^2*e^6 + 10*x*e^3 + 25)/x^2)*log(x))*e^(1/3*log(e^((x^2*e^6 + 10*x*e^3 + 25)/x^2)
*log(x) - x) - 5/3))/(x^3*e^((x^2*e^6 + 10*x*e^3 + 25)/x^2)*log(x) - x^4), x)
________________________________________________________________________________________
maple [F] time = 0.11, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-10*x*exp(3)-50)*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*ln(x)+x^2*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2
)-x^3)*exp(1/3*ln(exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*ln(x)-x)-5/3)+3*x^3*exp((x^2*exp(3)^2+10*x*exp(3)+25)
/x^2)*ln(x)-3*x^4)/(3*x^3*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*ln(x)-3*x^4),x)
[Out]
int((((-10*x*exp(3)-50)*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*ln(x)+x^2*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2
)-x^3)*exp(1/3*ln(exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*ln(x)-x)-5/3)+3*x^3*exp((x^2*exp(3)^2+10*x*exp(3)+25)
/x^2)*ln(x)-3*x^4)/(3*x^3*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*ln(x)-3*x^4),x)
________________________________________________________________________________________
maxima [A] time = 0.53, size = 33, normalized size = 1.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-10*x*exp(3)-50)*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*log(x)+x^2*exp((x^2*exp(3)^2+10*x*exp(3)+
25)/x^2)-x^3)*exp(1/3*log(exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*log(x)-x)-5/3)+3*x^3*exp((x^2*exp(3)^2+10*x*e
xp(3)+25)/x^2)*log(x)-3*x^4)/(3*x^3*exp((x^2*exp(3)^2+10*x*exp(3)+25)/x^2)*log(x)-3*x^4),x, algorithm="maxima"
)
[Out]
(x*e^(5/3) + (e^(10*e^3/x + 25/x^2 + e^6)*log(x) - x)^(1/3))*e^(-5/3)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(log(exp((10*x*exp(3) + x^2*exp(6) + 25)/x^2)*log(x) - x)/3 - 5/3)*(x^3 - x^2*exp((10*x*exp(3) + x^2*e
xp(6) + 25)/x^2) + exp((10*x*exp(3) + x^2*exp(6) + 25)/x^2)*log(x)*(10*x*exp(3) + 50)) + 3*x^4 - 3*x^3*exp((10
*x*exp(3) + x^2*exp(6) + 25)/x^2)*log(x))/(3*x^4 - 3*x^3*exp((10*x*exp(3) + x^2*exp(6) + 25)/x^2)*log(x)),x)
[Out]
int((exp(log(exp((10*x*exp(3) + x^2*exp(6) + 25)/x^2)*log(x) - x)/3 - 5/3)*(x^3 - x^2*exp((10*x*exp(3) + x^2*e
xp(6) + 25)/x^2) + exp((10*x*exp(3) + x^2*exp(6) + 25)/x^2)*log(x)*(10*x*exp(3) + 50)) + 3*x^4 - 3*x^3*exp((10
*x*exp(3) + x^2*exp(6) + 25)/x^2)*log(x))/(3*x^4 - 3*x^3*exp((10*x*exp(3) + x^2*exp(6) + 25)/x^2)*log(x)), x)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-10*x*exp(3)-50)*exp((x**2*exp(3)**2+10*x*exp(3)+25)/x**2)*ln(x)+x**2*exp((x**2*exp(3)**2+10*x*ex
p(3)+25)/x**2)-x**3)*exp(1/3*ln(exp((x**2*exp(3)**2+10*x*exp(3)+25)/x**2)*ln(x)-x)-5/3)+3*x**3*exp((x**2*exp(3
)**2+10*x*exp(3)+25)/x**2)*ln(x)-3*x**4)/(3*x**3*exp((x**2*exp(3)**2+10*x*exp(3)+25)/x**2)*ln(x)-3*x**4),x)
[Out]
Timed out
________________________________________________________________________________________