3.85.81 6250+e2e8x/5(516e8x/5x)3125dx

Optimal. Leaf size=20 2x1625e2e8x/5x

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 30, number of rulesintegrand size = 0.067, Rules used = {12, 2288} 2x1625e2e8x/5x

Antiderivative was successfully verified.

[In]

Int[(6250 + E^(2*E^((8*x)/5))*(-5 - 16*E^((8*x)/5)*x))/3125,x]

[Out]

2*x - (E^(2*E^((8*x)/5))*x)/625

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=(6250+e2e8x/5(516e8x/5x))dx3125=2x+e2e8x/5(516e8x/5x)dx3125=2x1625e2e8x/5x

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 20, normalized size = 1.00 2x1625e2e8x/5x

Antiderivative was successfully verified.

[In]

Integrate[(6250 + E^(2*E^((8*x)/5))*(-5 - 16*E^((8*x)/5)*x))/3125,x]

[Out]

2*x - (E^(2*E^((8*x)/5))*x)/625

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 14, normalized size = 0.70 1625xe(2e(85x))+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3125*(-16*x*exp(8/5*x)-5)*exp(exp(8/5*x))^2+2,x, algorithm="fricas")

[Out]

-1/625*x*e^(2*e^(8/5*x)) + 2*x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 13125(16xe(85x)+5)e(2e(85x))+2dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3125*(-16*x*exp(8/5*x)-5)*exp(exp(8/5*x))^2+2,x, algorithm="giac")

[Out]

integrate(-1/3125*(16*x*e^(8/5*x) + 5)*e^(2*e^(8/5*x)) + 2, x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 15, normalized size = 0.75




method result size



default 2xe2e8x5x625 15
norman 2xe2e8x5x625 15
risch 2xe2e8x5x625 15



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3125*(-16*x*exp(8/5*x)-5)*exp(exp(8/5*x))^2+2,x,method=_RETURNVERBOSE)

[Out]

2*x-1/625*exp(exp(8/5*x))^2*x

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 1625xe(2e(85x))+2x11000Ei(2e(85x))+1625e(2e(85x))dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3125*(-16*x*exp(8/5*x)-5)*exp(exp(8/5*x))^2+2,x, algorithm="maxima")

[Out]

-1/625*x*e^(2*e^(8/5*x)) + 2*x - 1/1000*Ei(2*e^(8/5*x)) + 1/625*integrate(e^(2*e^(8/5*x)), x)

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 12, normalized size = 0.60 x(e2e8x51250)625

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(2 - (exp(2*exp((8*x)/5))*(16*x*exp((8*x)/5) + 5))/3125,x)

[Out]

-(x*(exp(2*exp((8*x)/5)) - 1250))/625

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 15, normalized size = 0.75 xe2e8x5625+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3125*(-16*x*exp(8/5*x)-5)*exp(exp(8/5*x))**2+2,x)

[Out]

-x*exp(2*exp(8*x/5))/625 + 2*x

________________________________________________________________________________________