Optimal. Leaf size=20 \[ 2 x-\frac {1}{625} e^{2 e^{8 x/5}} x \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {12, 2288} \begin {gather*} 2 x-\frac {1}{625} e^{2 e^{8 x/5}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (6250+e^{2 e^{8 x/5}} \left (-5-16 e^{8 x/5} x\right )\right ) \, dx}{3125}\\ &=2 x+\frac {\int e^{2 e^{8 x/5}} \left (-5-16 e^{8 x/5} x\right ) \, dx}{3125}\\ &=2 x-\frac {1}{625} e^{2 e^{8 x/5}} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 1.00 \begin {gather*} 2 x-\frac {1}{625} e^{2 e^{8 x/5}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 14, normalized size = 0.70 \begin {gather*} -\frac {1}{625} \, x e^{\left (2 \, e^{\left (\frac {8}{5} \, x\right )}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{3125} \, {\left (16 \, x e^{\left (\frac {8}{5} \, x\right )} + 5\right )} e^{\left (2 \, e^{\left (\frac {8}{5} \, x\right )}\right )} + 2\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 15, normalized size = 0.75
method | result | size |
default | \(2 x -\frac {{\mathrm e}^{2 \,{\mathrm e}^{\frac {8 x}{5}}} x}{625}\) | \(15\) |
norman | \(2 x -\frac {{\mathrm e}^{2 \,{\mathrm e}^{\frac {8 x}{5}}} x}{625}\) | \(15\) |
risch | \(2 x -\frac {{\mathrm e}^{2 \,{\mathrm e}^{\frac {8 x}{5}}} x}{625}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{625} \, x e^{\left (2 \, e^{\left (\frac {8}{5} \, x\right )}\right )} + 2 \, x - \frac {1}{1000} \, {\rm Ei}\left (2 \, e^{\left (\frac {8}{5} \, x\right )}\right ) + \frac {1}{625} \, \int e^{\left (2 \, e^{\left (\frac {8}{5} \, x\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 12, normalized size = 0.60 \begin {gather*} -\frac {x\,\left ({\mathrm {e}}^{2\,{\mathrm {e}}^{\frac {8\,x}{5}}}-1250\right )}{625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 15, normalized size = 0.75 \begin {gather*} - \frac {x e^{2 e^{\frac {8 x}{5}}}}{625} + 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________